Warianty tytułu
Języki publikacji
Abstrakty
The present paper concerns the study of geometrically non-linear forced vibrations of beams resting on two different types of springs: rotational and translational. Assuming that the motion is harmonic, the displacement is extended as a series of spatial functions determined by solving the linear problem. Hamilton’s principle and spectral analysis are used to reduce the problem to a non-linear algebraic system solved using a previously developed approximate method. The effects of the nature of the added springs and their location on the non-linear behaviour of the beam are examined. A multimode approach is used in the forced case to obtain results over a wide range of vibration amplitudes. This leads to examining the non-linear forced dynamic response for different positions of each spring and different levels of excitations. Following a parametric study, the non-linear forced mode shapes and their associated bending moments are presented for different levels of excitations and for different vibration amplitudes to give an estimation of the stress distribution over the beam length.
Czasopismo
Rocznik
Tom
Strony
225--242
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- LMPGI, Hassan II University of Casablanca Casablanca, Morocco, hatim.fakhreddine@gmail.com
autor
- LMPGI, Hassan II University of Casablanca Casablanca, Morocco
autor
- Mohammed V University in Rabat, ENSET – Rabat MSSM, B.P.6207, Rabat, Morocco
autor
- LMPGI, Hassan II University of Casablanca Casablanca, Morocco
autor
- Mohammed V University in Rabat, EMI – Rabat LERSIM, Agdal, B.P. 765, Rabat, Morocco
Bibliografia
- 1. Dowell E.H., On some general properties of combined dynamical systems, Journal of Applied Mechanics, 46(1): 206–209, 1979, doi: 10.1115/1.3424499.
- 2. Gürgöze M., A note on the vibrations of restrained beams and rods with point masses, Journal of Sound and Vibration, 96(4): 461–468, 1984, doi: 10.1016/0022-460X(84)90633-3.
- 3. Wang J., Qiao P., Vibration of beams with arbitrary discontinuities and boundary conditions, Journal of Sound and Vibration, 308(1–2): 12–27, 2007, doi: 10.1016/ j.jsv.2007.06.071.
- 4. Lin H.-Y., Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements, Journal of Sound and Vibration, 309(1–2): 262–275, 2008, doi: 10.1016/J.JSV.2007.07.015.
- 5. Lin H.-Y., On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements, Journal of Sound and Vibration, 319(1–2): 593–605, 2009, doi: 10.1016/j.jsv.2008.05.022.
- 6. Kohan P.H., Nallim L.G., Gea S.B., Dynamic characterization of beam type structures: Analytical, numerical and experimental applications, Applied Acoustics, 72(12): 975–981, 2011, doi: 10.1016/j.apacoust.2011.06.007.
- 7. Wu J.S., Chen J.H., An efficient approach for determining forced vibration response amplitudes of a MDOF system with various attachments, Shock and Vibration, 19(1): 57–79, 2012, doi: 10.3233/SAV-2012-0616.
- 8. Yesilce Y., Free and forced vibrations of an axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements, Shock and Vibration, 19(4): 735–752, 2012, doi: 10.3233/SAV-2012-0665.
- 9. Wu J.-S., Chang B.-H., Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method, European Journal of Mechanics – A/Solids, 38: 20–37, 2013, doi: 10.1016/j.euromechsol. 2012.08.003.
- 10. Şakar G., The effect of axial force on the free vibration of an Euler-Bernoulli beam carrying a number of various concentrated elements, Shock and Vibration, 20(3): 357– 367, 2013, doi: 10.3233/SAV-120750.
- 11. Farghaly S.H., El-Sayed T.A., Exact free vibration of multi-step Timoshenko beam system with several attachments, Mechanical Systems and Signal Processing, 72–73: 525– 546, 2016, doi: 10.1016/j.ymssp.2015.11.025.
- 12. El-Sayed T.A., Farghaly S.H., A normalized transfer matrix method for the free vibration of stepped beams : comparison with experimental and FE (3D) methods, Shock and Vibration, 2017: Article ID 8186976, 2017, doi: 10.1155/2017/8186976.
- 13. Lin R.M., Ng T.Y., Exact vibration modes of multiple-stepped beams with arbitrary steps and supports using elemental impedance method, Engineering Structures, 152: 24– 34, 2017, doi: 10.1016/j.engstruct.2017.07.095.
- 14. Saito H., Sato K., Yutani T., Non-linear forced vibrations of a beam carrying concentrated mass under gravity, Journal of Sound and Vibration, 46(4): 515–525, 1976, doi: 10.1016/0022-460X(76)90677-5.
- 15. Lewandowski R., Nonlinear free vibrations of multispan beams on elastic supports, Computers & Structures, 32(2): 305–312, 1989, doi: 10.1016/0045-7949(89)90042-4.
- 16. Lewandowski R., Non-linear, steady-state analysis of multispan beams by the finite element method, Computers & Structures, 39(l–2): 83–93, 1991, doi: 10.1016/0045- 7949(91)90075-W.
- 17. Pakdemirli M., Nayfeh A.H., Nonlinear vibrations of a beam- spring-mass system, Journal of Vibration and Acoustics, 116(4): 433–439, 1994, doi: 10.1115/1.2930446.
- 18. Ghayesh M.H., Kazemirad S., Darabi M.A., A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions, Journal of Sound and Vibration, 330(22): 5382–5400, 2011, doi: 10.1016/j.jsv.2011.06.001.
- 19. Barry O.R., Oguamanam D.C.D., Zu J.W., Nonlinear vibration of an axially loaded beam carrying multiple mass-spring-damper systems, Nonlinear Dynamics, 77(4): 1597– 1608, 2014, doi: 10.1007/s11071-014-1402-5.
- 20. Wielentejczyk P., Lewandowski R., Geometrically nonlinear, steady state vibration of viscoelastic beams, International Journal of Non-Linear Mechanics, 89: 177–186, 2016, doi: 10.1016/j.ijnonlinmec.2016.12.012.
- 21. Lotfan S., Sadeghi M.H., Large amplitude free vibration of a viscoelastic beam carrying a lumped mass–spring–damper, Nonlinear Dynamics, 90(2): 1053–1075, 2017, doi: 10.1007/s11071-017-3710-z.
- 22. Bukhari M.A., Barry O.R., Nonlinear vibrations of a beam- spring-large mass system, Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration, and Control, Tampa, Florida, USA, November 3–9, 2017, Art. ID V04BT05A061, 2017, doi: 10.1115/IMECE2017-70444.
- 23. Fakhreddine H., Adri A., Rifai S., Benamar R., A multimode approach to geometrically non-linear forced vibrations of Euler-Bernoulli multispan beams, Journal of Vibration Engineering & Technologies, 8(2): 319–326, 2020, doi: 10.1007/s42417-019-00139-8.
- 24. Fakhreddine H., Adri A., Chajdi M., Rifai S., Benamar R., A multimode approach to geometrically non-linear forced vibration of beams carrying point masses, Diagnostyka, 21(4): 23–33, 2020, doi: 10.29354/diag/128603.
- 25. Chajdi M., Ahmed A., El Bikri K., Benamar R., Analysis of the associated stress distributions to the nonlinear forced vibrations of functionally graded multi-cracked beams, Diagnostyka, 22(1): 101–112, 2021, doi: 10.29354/diag/133702.
- 26. El Hantati I., Adri A., Fakhreddine H., Rifai S., Benamar R., A multimode approach to geometrically nonlinear free and forced vibrations of multistepped beams, Shock and Vibration, 2021: 6697344, 2021, doi: 10.1155/2021/6697344.
- 27. Géradin M., Rixen D.J., Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed., John Wiley & Sons, 2015.
- 28. Rahmouni A., Beidouri Z., Benamar R., A discrete model for geometrically nonlinear transverse free constrained vibrations of beams carrying a concentrated mass at various locations, Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June – 2 July 2014, A. Cunha, E. Caetano, P. Ribeiro, G. Müller [Eds], pp. 2093–2099, 2014.
- 29. El Bikri K., Benamar R., Bennouna M.M., Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack, Computers & Structures, 84(7): 485–502, 2006, doi: 10.1016/j.compstruc.2005.09.030.
- 30. El Kadiri M., Benamar R, White R.G., Improvement of the semi-analytical method, for determining the geometrically non-linear response of thin straight structures. Part I: Application to clamped-clamped and simply supported-clamped beams, Journal of Sound and Vibration, 249(2): 263–305, 2002, doi: 10.1006/jsvi.2001.3808.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a4c4ab31-4f33-47a7-a20f-d905bcea1cc3