Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, nr 3 | 327--338
Tytuł artykułu

The Response of Wetland Plant Communities to Disturbance : Alleviation through Symmetric Disturbance and Facilitation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study pays attention to disturbances in early successional communities of wetland vegetation. We conducted artificial disturbances in a community of Suaeda salsa and Phragmites australis in the Yellow River Delta (China). Eight types of disturbances combining mowing treatments with species treatments were applied. Removal of the standing litters of P. australis or not was defined as mowing treatments, and removal of two species solo or both was defined as species treatments. We sampled 80 quadrats from the treatments plots at different intervals after the disturbance to investigate plant height, abundance, aboveground biomass, the distance between plants to reflect the effect of disturbance on composition, structure, productivity, and function of the plant communities. The strategies of seedling emergence and height growth differed as the canopy changed. Biomass contribution of different species, combined with disturbance intensity, was the main factors that affected the productivity. Homogeneity of disturbance was better for maintaining the functions of plant community in compared with the competitiveness (C), stress-tolerance (S) and ruderality (C-S-R) signatures with the control. Facilitations were reflected by the stagger arrangements in relative growth rates of the two species and in plant-plant interactions calculated by a modified function of competition. Adapting to symmetric disturbance and developing facilitative interactions are important requirements for early succession terrestrial vegetation to establish and stabilize in the seriously saline environments of wetlands.
Wydawca

Rocznik
Strony
327--338
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • College of Life Sciences, Shandong Normal University, Jinan, 250014, China, xufeisdnu@yahoo.com
  • College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
  • Institute of Environment and Ecology, Shandong Normal University, Jinan, 250014, China
autor
  • College of Life Sciences, Shandong Normal University, Jinan, 250014, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Jinan, 250100, China
autor
  • College of Life Sciences, Shandong Normal University, Jinan, 250014, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Jinan, 250100, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Jinan, 250100, China
Bibliografia
  • [1] Aubin I., Venier L., Pearce J., Moretti M. 2012 — Can a trait-based multi-taxa approach improve our assessment of forest management impact on biodiversity — Biodivers. Conserv. 22: 2957–2975.
  • [2] Baptist F., Secher-Fromell H., Viard-Cretat F., Aranjuelo I., Clement J. C., Crème A., Desclos M., Laine P., Nogues S., Lavorel S. 2013 — Carbohydrate and nitrogen stores in Festuca paniculata under mowing explain dominance in subalpine grasslands — Plant Biol. 15: 395–404.
  • [3] Bezemer T. M., Van der Putten W. H. 2007 — Diversity and stability in plant communities — Nature, 446: E6–E7.
  • [4] Bolnick D. I., Ingram T., Stutz W. E., Snowberg L. K., Lee Lau O., Paull J. S. 2010 — Ecological release from interspecific competition leads to decoupled changes in population and individual niche width — P. Roy. Soc. B 277: 1789–1797.
  • [5] Brooker R. W., Maestre F. T., Callaway R. M., Lortie C. L., Cavieres L. A., Kunstler G., Liancourt P., Tielbörger K., Travis J. M. J., Anthelme F., Armas C., Coll L., Corcket E., Delzon S., Forey E., Kikvidze Z., Olofsson J., Pugnaire F., Quiroz C. L., Saccone P., Schiffers K., Seifan M., Touzard B., Michalet R. 2008 — Facilitation in plant communities: the past, the present, and the future — J. Ecol. 96: 18–34.
  • [6] Buckling A., Kassen R., Bell G., Rainey P. B. 2000 — Disturbance and diversity in experimental microcosms — Nature, 408: 961–964.
  • [7] Cadotte M. W. 2007 — Competition-colonization trade-offs and disturbance effects at multiple scales — Ecology, 88: 823–829.
  • [8] Chesson P., Huntly N. 1997 — The roles of harsh and fluctuating conditions in the dynamics of ecological communities — Am. Nat. 150: 519–553.
  • [9] Connell J. 1978 — Diversity in tropical rain forest and coral reefs — Science, 199: 1302–1310.
  • [10] Cui B. S., He Q., Zhang K. J., Chen X. 2011 — Determinants of annual-perennial plant zonation across a salt-fresh marsh interface: a multistage assessment — Oecologia, 166: 1067–1075.
  • [11] Damhoureyeh S. A., Hartnett D. C. 2002 — Variation in grazing tolerance among three tallgrass prairie plant species — Am. J. Bot. 89: 1634–1643.
  • [12] Dickson T. L., Gross K. L. 2013 — Plant community responses to long-term fertilization: changes in functional group abundance drive changes in species richness — Oecologia, 173: 1513–1520.
  • [13] Dyer M. I. 1975 — The effects of red-winged blackbirds (Agelaius phoeniceus L.) on biomass production of corn grains (Zea mays L.) — J. Appl. Ecol. 12: 719–726.
  • [14] Enquist B. J., Niklas K. J. 2002 — Global allocation rules for patterns of biomass partitioning in seed plants — Science, 295: 1517–1520.
  • [15] Falster D. S., Westoby M. 2005 — Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession — Oikos, 111: 57–66.
  • [16] Frelich L. E. 2012 — Disturbance at the center of ecology and human lives — BioScience, 62: 924–925.
  • [17] Gao Y., Wang D. L., Ba L., Bai Y. G., Liu B. 2008 — Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis — Environ. Exp. Bot. 63: 113–122.
  • [18] García-Cervigón A. I., Gazol A., Sanz V., Camarero J. J., Olano J. M. 2013 — Intraspecific competition replaces interspecific facilitation as abiotic stress decreases: the shifting nature of plant-plant interactions — Perspect. Plant Ecol. Evol. Syst. 15: 226–236.
  • [19] Goreaud F., Loreau M., Millie C. 2002 — Spatial structure and the survival of an inferior competitor: a theoretical model of neighborhood competition in plants — Ecol. Model. 158: 1–19.
  • [20] Grime J. P. 1973 — Competition exclusion in herbaceous vegetation — Nature, 242: 344–347.
  • [21] Grime J. P. 1974 — Vegetation classification by reference to strategies — Nature, 250: 26–31.
  • [22] Grime J. P. 1998 — Benefits of plant diversity to ecosystems: immediate, filter and founder effects — J. Ecol. 86: 902–910.
  • [23] Grime J. P. 2006 — Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences — J. Veg. Sci. 17: 255–260.
  • [24] Gross N., Robson T. M., Lavorel S., Albert C., Le Bagousse-Pinguet Y., Guillemin R. 2008 — Plant response traits mediate the effects of subalpine grasslands on soil moisture — New Phytol. 180: 652–662.
  • [25] Hegyi F. 1974 — A simulation model for managing jack-pine stands (In: Growth models for tree and stand simulation, Ed: G. Fries) — Royal College of Forestry, Sweden, pp. 74–90.
  • [26] Hester A. J., Edenius L., Buttenschon R. M., Kuiters A. T. 2000 — Interactions between forests and herbivores: the role of controlled grazing experiments — Forestry, 73: 381–391.
  • [27] Hill M. O. 1973 — Diversity and evenness: a unifying notation and its consequences — Ecology, 54: 427–432.
  • [28] Hodgson J. G., Wilson P. J., Hunt R., Grime J. P., Thompson K. 1999 — Allocating C-S-R plant functional types: a soft approach to a hard problem — Oikos, 85: 282–294.
  • [29] Hunt R., Hodgson J. G., Thompson K., Bungener P., Dunnett N. P., Askew A. P. 2004 — A new practical tool for deriving a functional signature for herbaceous vegetation — Appl. Veg. Sci. 7: 163–170.
  • [30] Kiehl K., Esselink P., Bakker J. P. 1997 — Nutrient limitation and plant species composition in temperate salt marshes — Oecologia, 111: 325–330.
  • [31] Kimbro D. L., Grosholz E. D. 2006 — Disturbance influences oyster community richness and evenness, but not diversity — Ecology, 87: 2378–2388.
  • [32] King J. S., Albaugh T. J., Allen H. L., Buford M., Strain B. R.. Dougherty P. 2002 — Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine — New Phytol. 154: 389–398.
  • [33] Kondoh M. 2001 — Unifying the relationships of species richness to productivity and disturbance — P. Roy. Soc. B 268: 269–271.
  • [34] Loehle C. 2000 — Strategy space and the disturbance spectrum: a life-history model for tree species coexistence — Am. Nat. 156: 14–33.
  • [35] Mackey R. L., Currie D. J. 2001 — The diversity—disturbance relationship: is it generally strong and peaked — Ecology, 82: 3479–3492.
  • [36] Maestre F. T., Callaway R. M., Valladares F., Lortie C. J. 2009 — Refining the stress-gradient hypothesis for competition and facilitation in plant communities — J. Ecol. 97: 199–205.
  • [37] McIntire E. J. B., Fajardo A. 2011 — Facilitation within species: a possible origin of group selected superorganisms — Am. Nat. 178: 88–97.
  • [38] McNaughton S. J. 1979 — Grazing as an optimization process: grass-ungulate relationships in the Serengeti — Am. Nat. 113: 691–703.
  • [39] Medeiros D. L., White D.S ., Howes B. L. 2013 — Replacement of Phragmites australis by Spartina alterniflora: the role of competition and salinity — Wetlands, 33: 421–430.
  • [40] Miller A. D., Roxburgh S. H., Shea K. 2011 — How frequency and intensity shape diversity-disturbance relationships — Proc. Natl. Acad. Sci. USA, 108: 5643–5648.
  • [41] Roxburgh S. H., Shea K., Wilson J. B. 2004 — The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence — Ecology, 85: 359–371.
  • [42] Sasaki T., Lauenroth W. K. 2011 — Dominant species, rather than diversity, regulates temporal stability of plant communities — Oecologia, 166: 761–768.
  • [43] Shea K., Roxburgh S. H., Rauschert E. S. J. 2004 — Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes — Ecol. Lett. 7: 491–508.
  • [44] Soliveres S., Eldridge D. J., Maestre F. T., Bowker M. A., Tighe M., Escudero A. 2010 — Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework — Perspect. Plant Ecol. Evol. Syst. 13: 247–258.
  • [45] Svensson J. R., Lindegarth M., Jonsson P. R., Pavia H. 2012 — Disturbance—diversity models: what do they really predict and how are they tested — Proc. R. Soc. B 279: 2163–2170.
  • [46] Tilman D., Reich P. B., Knops J. M. H. 2006 — Biodiversity and ecosystem stability in a decade-long grassland experiment — Nature, 441: 629–632.
  • [47] Tilman D., Reich P. B., Knops J. M. H. 2007 — Diversity and stability in plant communities (Reply) — Nature, 446: E7–E8.
  • [48] Violle C., Pu Z. C., Jiang L. 2010 — Experimental demonstration of the importance of competition under disturbance — Proc. Natl. Acad. Sci. USA, 107: 12925–12929.
  • [49] Wang Z. M., Wu J. G., Madden M., Mao D. H. 2012 — China's wetlands: conservation plans and policy impacts — AMBIO, 41: 782–786.
  • [50] Wise M. J., Abrahamson W. G. 2005 — Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory — Oikos, 109: 417–428.
  • [51] Woods K. D. 2000 — Dynamics in late successional hemlock-hardwood forests over three decades — Ecology, 81: 110–126.
  • [52] Yu Y., Wang H., Liu J., Wang Q., Shen T. L., Guo W. H., Wang R. Q. 2012 — Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary — Eur. J. Soil Biol. 49: 12–21.
  • [53] Zhao K. F., Song J., Feng G., Zhao M., Liu J. P. 2011 — Species, types, distribution, and economic potential of halophytes in China — Plant Soil, 342, 495–509.
  • [54] Zunzunegui M., Esquivias M. P., Oppo F., Gallego-Fernández J. B. 2012 — Interspecific competition and livestock disturbance control the spatial patterns of two coastal dune shrubs — Plant Soil, 354: 299–309.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a486fd22-1b2c-4559-9b8d-c9c23c5e9151
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.