Warianty tytułu
Języki publikacji
Abstrakty
Our study involved a combination of practical experiments and numerical simulations using the Abaqus computational software. The main aim was to enhance our understanding of the mechanical characteristics exhibited by 6082 aluminium alloy when exposed to tensile forces. To achieve this, we produced 18 samples of standardized dimensions utilizing a parallel lathe. These samples then underwent a thermal treatment comprising a solution treatment, water quenching and various tempering procedures at different temperatures (280°C, 240°C, 200°C, 160°C and 120°C), resulting in a range of hardness levels. To obtain the experimental results, we conducted tensile tests on a specialized machine, which were subsequently supplemented with numerical analyses. By adopting this approach, we gained valuable insights into the behaviour of aluminium alloy 6082, specifically regarding its mechanical properties such as hardness, tensile strength, elongation and necking coefficient. This newfound knowledge holds potential significance in the realm of designing and optimizing aluminium structures that operate within high-temperature environments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
385--392
Opis fizyczny
Bibliogr.16 poz., tab., wykr.
Twórcy
autor
- Mechanical Department, Faculty of Technology, University of Msila, Msila, Algeria, abdelmalek.elhadi@univ-msila.dz
- Materials and Structural Mechanics Laboratory (LMMS). University of M'sila, M'sila, Algeria
autor
- Mechanical Department, Faculty of Technology, University of Msila, Msila, Algeria, salah.amroune@univ-msila.dz
- Materials and Structural Mechanics Laboratory (LMMS). University of M'sila, M'sila, Algeria
autor
- Faculty of Technology, M’hamed Bougara, University, Boumerdes 35000, Algeria, houari.latif2016@gmail.com
autor
- Laboratoire de Matériaux, et Mécanique des Structures (LMMS), Université SBA. Sidi Bel Abesse, Algérie, koumad10@yahoo.fr
Bibliografia
- 1. Narayana GV, Sharma V, V Diwakar, Kumar KS, Prasad R. Fracture behaviour of aluminium alloy 2219–T87 welded plates. Science and technology of welding and joining. 2004;9(2):121-130. https://doi.org/10.1179/136217104225017035
- 2. Kang H, Park JY, Choi YS, Cho DH. Influence of the solution and artificial aging treatments on the microstructure and mechanical properties of die-cast Al–Si–Mg alloys. Metals. 2021;12(1):71. https://doi.org/10.3390/met12010071
- 3. Gabryelczyk A, S Ivanov, Bund A, Lota G. Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage. 2021;43:103226. https://doi.org/10.1016/j.est.2021.103226
- 4. Kumar CR, Malarvannan RRR, JaiGanesh V. Role of SiC on Me-chanical. Tribological and Thermal Expansion Characteristics of B4C/Talc-Reinforced Al-6061 Hybrid Composite. Silicon. 2020; 12(6):1491-1500. 10.1007/s12633-019-00243-0
- 5. Watts SJ, Hill RG, O’Donnell MD, Law RV. Influence of magnesia on the structure and properties of bioactive glasses. Journal of Non-Crystalline Solids. 2010;356(9):517-524. https://doi.org/10.1016/j.jnoncrysol.2009.04.074
- 6. Prabhu Swamy NR, Ramesh CS, Chandrashekar T. Effect of heat treatment on strength and abrasive wear behaviour of Al6061-SiCp composites. Bulletin of Materials Science. 2010;33(1):49-54. 10.1007/s12034-010-0007-y
- 7. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM. The micro-structure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mate-rials Science and Engineering: A. 2016;667:139-146. https://doi.org/10.1016/j.msea.2016.04.092
- 8. Wang LF, Sun J, Yu XL, Shi Y, Zhu XG, Cheng LY, Liang HH, Yan B, Guo LJ. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Materi-als Science and Engineering: A. 2018;734:299-310. https://doi.org/10.1016/j.msea.2018.07.103
- 9. Trană E, Rotariu AN, Lixandru P, Matache LC, Enache C, Zecheru T. Experimental and numerical investigation on 6082 0 temper alumini-um alloy cartridge tubes drawing. Journal of Materials Processing Technology. 2015;216:59-70. https://doi.org/10.1016/j.jmatprotec.2014.08.032
- 10. Clausen AH, Børvik T, Hopperstad OS, Benallal A. Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering: A. 2004;364(1):260-272. https://doi.org/10.1016/j.msea.2003.08.027
- 11. Field J E, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering. 2004;30(7):725-775. https://doi.org/10.1016/j.ijimpeng.2004.03.005
- 12. Wierzbicki T, Bao Y, Lee YW, Bai Y. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences. 2005;47(4):719-743. https://doi.org/10.1016/j.ijmecsci.2005.03.003
- 13. Mohamed A, Samuel FH. A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Heat Treatment-Conventional and Novel Appli-cations. 2012;1:55-72. http://dx.doi.org/10.5772/79832
- 14. Rao D, Huber K, Heerens J, dos Santos JF, Huber N. Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints. Materials Science and Engineer-ing: A. 2013;565:44-50. https://doi.org/10.1016/j.msea.2012.12.014
- 15. Kang J, Rao H, Zhang R, Avery K, Su X. Tensile and fatigue behav-iour of self-piercing rivets of CFRP to aluminium for automotive appli-cation. in IOP Conference Series: Materials Science and Engineer-ing. 2016. IOP Publishing.
- 16. Hillert M. On theories of growth during discontinuous precipitation. Metallurgical and Materials Transactions B. 1972;3(11):2729-2741. 10.1007/bf02652840
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a483b633-a223-4f50-b3c8-4c5336a52a06