Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 34, No. 4 | 819--827
Tytuł artykułu

Effect of NaOH concentration on optical properties of zinc oxide nanoparticles

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, powder zinc oxide samples were prepared by varying NaOH concentration (0.1 M – 0.4 M) using wet-chemical co-precipitation method. As-synthesized ZnO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL) and Raman spectroscopy. Formation of hexagonal wurtzite structure of the ZnO samples has been revealed from XRD studies. This study further suggests reduction in crystallite size from 40 nm to 23 nm with an increase in NaOH concentration which is confirmed by FESEM. PL and Raman spectroscopy studies of these samples show significant peak shift towards the higher and lower energy respectively, with maximum PL emission between 400 nm and 470 nm region of the visible spectrum. Noticeable inverse relationship between optical properties of ZnO nanoparticles and NaOH concentration may be attributed to the rapid nucleation during the synthesis process. With these remarkable properties, ZnO nanoparticles may find applications in nanoelectronic devices, sensors, nanomedicine, GATE dielectrics, photovoltaic devices, etc.
Słowa kluczowe
Wydawca

Rocznik
Strony
819--827
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 123105005_aibhav@manit.ac.in
autor
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India
autor
  • Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal (M.P.), India
Bibliografia
  • [1] ZHANG X., QIN J., XUE Y., YU P., ZHANG B., WANG L., LIU R., Sci. Rep.-UK, 4 (2014), 4596.
  • [2] XU S., WANG Z.L., Nano Res., 4 (2011), 1013.
  • [3] WILLANDER M., NUR O., SADAF J.R., QADIR M.I., ZAMAN S., ZAINELABDIN A., BANO N., HUSSAIN I., Materials, 3 (2010), 2643.
  • [4] KOŁODZIEJCZAK-RADZIMSKA A., JESIONOWSKI T., Materials, 7 (2014), 2833.
  • [5] UMAR A., HAHN Y.B., ZnO Nanoparticles: Growth, Properties, and Applications, in: UMAR A., HAHN Y.B. (Eds.), Metal Oxide Nanostructures and Their Applications, American Scientific Publishers, California, 2010, p. 1.
  • [6] PODPORSKA-CARROLL J., MYLES A., QUILTY B., MCCORMACK D.E., FAGAN R., HINDER S.J., DIONYSIOU D.D., PILLAI S.C., J. Hazard. Mater., (2015).
  • [7] KUNDU S., Colloid. Surface. A, 446 (2014), 199.
  • [8] CHAND P., GAUR A., KUMAR A., GAUR U.K., Appl. Surf. Sci., 356 (2015), 438.
  • [9] JYOTI M., VIJAY D., RADHA S., IJSRP, 3 (2013), 1.
  • [10] NARAYANAN G.N., GANESH R.S., KARTHIGEYAN A., Thin Solid Films, 598 (2016), 39.
  • [11] KUMAR S.S., VENKATESWARLU P., RAO V.R., RAO G.N., Int. Nano Lett., 3 (2013), 1.
  • [12] PHOLNAK C., CHITNARONG S., SUMETHA S., DAVID J.H., Mater. Res., 17 (2014), 405.
  • [13] BAGABAS A., ALSHAMMARI A., ABOUD M.FA, KOSSLICK H., Nanoscale Res. Lett., 8 (2013) 1.
  • [14] WAHAB R., ANSARI S.G., KIM Y.S., SONG M., SHIN H.S., Appl. Surf. Sci., 255 (2009), 4891.
  • [15] PRADHAN P., JUAN C.A., MONSERRAT B., Int. J. Photoenergy, 2012 (2012), 1.
  • [16] SONIA S., JAYRAM N.D., SURESH KUMAR P., MANGALARAJ D., PONPANDIAN N., VISWANATHAN C., Superlattice. Microst., 66 (2014), 1.
  • [17] MOAZZEN M.A.M., SEYED M.B., FARSHAD T., Appl. Nanosci., 3 (2013), 295.
  • [18] ANANDHAVELU S., THAMBIDURAI S., Mater. Chem. Phys., 131 (2011), 449.
  • [19] POLSONGKRAM D., CHAMNINOK P., PUKIRD S., CHOW L., LUPAN O., CHAI G., KHALLAF H., PARK S., SCHULTE A., Physica B, 403 (2008), 3713.
  • [20] KAHOULI M., BARHOUMI A., BOUZID A., ALHAJRY A., GUERMAZI S., Superlattice. Microst., 85 (2015), 7.
  • [21] SAMANTA P.K., PATRA S.K., GHOSH A., CHAUDHURI P.R., Int. J. Nanosci. Nanotechno., 1 (2009), 81.
  • [22] BINDU P., THOMAS S., J. Theor. Appl. Phys., 8 (2014), 123.
  • [23] HASSAN M.M., KHAN W., AZAM A., NAQVI A.H., J. Lumin., 145 (2014), 160.
  • [24] ZAK A.K., MAJID W.H.A., ABRISHAMI M.E., YOUSEFI R., Solid State Sci., 13 (2011), 251.
  • [25] NAVIN K., KURCHANIA R., Appl. Phys. A-Mater., 121 (2015), 1155.
  • [26] MULLIN J.W., Crystallization, Elsevier, London, 2001.
  • [27] ZHANG R., YIN P.G., WANG N., GUO L., Solid State Sci., 11 (2009), 865.
  • [28] ALIM K.A., FONOBEROV V.A., BALANDIN, A.A., Appl. Phys. Lett., 86 (2005), 53103.
  • [29] ARTUS L., CUSCO R., ALARCON-LLADO E., GONZALEZ-DIAZ G., MARTIL I., JIMENEZ J., WANG B., CALLAHAN M., Appl. Phys. Lett., 90 (2007), 181911.
  • [30] CAO W., DU W., J. Lumin., 124 (2007), 260.
  • [31] ZEFERINO R.S., FLORES M.B., PAL U., J. Appl. Phys., 109 (2011), 014308.
  • [32] FONOBEROV V.A., BALANDIN A.A., Properties of GaN and ZnO quantum dots, in: BALANDIN A.A., WANG K.L. (Eds.), Handbook of Semiconductor Nanostructures and Nanodevices, American Scientific Publishers, Los Angeles, 2006, p. 119.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a44d6897-759d-463c-bc5e-d84df744132f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.