Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 12, no. 1 | 97--107
Tytuł artykułu

Evaluation of ecological concrete using multi-criteria ecological index and performance index approach

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a new method of rational and quantitative assessment of ecological concrete in terms of the ecological impact and engineering performance. The concrete mix is evaluated through the multi-criteria Ecological Index (EI) and Performance Index (PI) approach. The EI accounts for the impact of the concrete on environment including the carbon emission and raw materials usage, whereas the PI accounts for the engineering performance of the concrete such as compressive strength and water sorptivity. Depending on the applications of the concrete, different criteria may be chosen for the evaluation. Concrete mixes reported in the literature comprising different types of cement, supplementary cementitious materials and aggregates are analyzed to illustrate the applicability of the proposed multi-criteria assessment method. It is shown that the proposed method is able to effectively reflect the concurrent ecological impact and engineering performance of concrete mixes, and hence facilitate rational design of ecological concrete to suit practical engineering applications.
Wydawca

Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • PhD; Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 17 Łukasiewicza St., 09-400 Płock, Poland, wojciech.kubissa@pw.edu.pl
  • PhD; Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 17 Łukasiewicza St., 09-400 Płock, Poland
  • PhD; Department of Civil Engineering, Foshan University, 528000 Foshan, China
autor
  • PhD; Faculty of Civil Engineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10223 Vilnius, Lithuania
  • MSc; Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 17 Łukasiewicza St., 09-400 Płock, Poland
  • PhD; Czech Technical University in Prague, Faculty of Civil Engineering, Experimental Centre
Bibliografia
  • [1] Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to Sustainable Development. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. doi:10.4324/9780203856598
  • [2] Zuo, J., & Zhao, Z. Y. (2014). Green building research-current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271-281. doi:10.1016/j.rser.2013.10.021
  • [3] Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. doi:10.1016/j.conbuildmat.2014.07.003
  • [4] Węglorz, M. (2014). Selected Aspects of Sustainable Civil Engineering. Architecture Civil Engineering Environment, 7(1), 41-47.
  • [5] Milošević, P. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29-42.
  • [6] Pawlikowska-Piechotka, A., & Piechotka, M. (2012). Urban Sustainable Development and Green Agenda Perspective (Case Study in Warsaw). Architecture Civil Engineering Environment, 5(4), 43-52.
  • [7] Słyk, J. (2015). Methodology of Architectural Design And Rules of Cooperation in The Digital Enviroment. Augmented Space as a Field of Research and Alternative Environment for Architectural Creation. Architecture Civil Engineering Environment, 8(4), 11-18.
  • [8] Witkowski, H. (2015). Sustainability of Self- Compacting Concrete. Architecture Civil Engineering Environment, 8(1), 83-88.
  • [9] Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., … Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409-419. doi:10.1016/j.jclepro.2015.09.072
  • [10] Muhd Norhasri, M. S., Hamidah, M. S., Mohd Fadzil, A., & Megawati, O. (2016). Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Construction and Building Materials, 127, 167-175. doi:10.1016/j.conbuildmat.2016.09.127
  • [11] Kubissa, W., Jaskulski, R., & Reiterman, P. (2017). Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 5(1), 53-61. Doi:10.7569/JRM.2017.634103
  • [12] Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489-1498. Doi:10.1016/j.cemconres.2004.01.021
  • [13] Müller, C. (2006). Environmental and technical aspects of the application of blended cements in concrete. Roads and Bridges - Drogi i Mosty, 5(3), 43-72.
  • [14] Dziuk, D., Giergiczny, Z., & Garbacik, A. (2013). Calcareous fly ash as a main constituent of common cements. Roads and Bridges - Drogi i Mosty, 12(1), 57-69.
  • [15] Mokrzycki, E., & Uliasz- Bocheńczyk, A. (2003). Alternative fuels for the cement industry. Applied Energy, 74(1-2), 95-100. doi:10.1016/S0306- 2619(02)00135-6
  • [16] Li, F., & Zhang, W. (2011). Combustion of sewage sludge as alternative fuel for cement industry. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 556-560. doi:10.1007/s11595-011- 0267-4
  • [17] Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393-400. doi:10.1016/j.proeng.2013.03.138
  • [18] Dabrowska, M., & Giergiczny, Z. (2013). Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges - Drogi i Mosty, 12(2), 131-146. doi:10.7409/rabdim.013.010
  • [19] Chandratilake, S. R., & Dias, W. P. S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22-28. doi:10.1016/j.energy.2013.07.026
  • [20] Matarneh, R. T. (2017). Development of Sustainable Assessment Method and Design Tool for Existing and Traditional Buildings in Jordan. Architecture Civil Engineering Environment, 10(4), 15-31.
  • [21] Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235-244. doi:10.1016/j.autcon.2009.10.004
  • [22] Chen, J. J., Fung, W. W. S., Ng, P. L., & Kwan, A. K. H. (2012). Adding fillers to reduce embodied carbon and embodied energy of concrete. In Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability, Prague (pp. 91-107). Michigan: American Concrete Institute.
  • [23] Zhang, Y. R., Liu, M. H., Xie, H. B., & Wang, Y. F. (2014). Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology: Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Taiwan (pp. 327-331). CRC Press.
  • [24] Teixeira, E. R.,Mateus, R., Camőesa, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221-2230. doi:10.1016/j.jclepro.2015.09.124
  • [25] Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. doi:10.1016/j.cemconcomp.2014.03.005
  • [26] Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244-248. doi:10.1016/j.rser.2015.01.043
  • [27] Lewandowska, A., Noskowiak, A., Pajchrowski, G., & Zarebska, J. (2015). Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. International Journal of Life Cycle Assessment, 20(1), 9-22. doi:10.1007/s11367-014- 0805-3
  • [28] Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847-860. doi:10.1007/s11367-016- 1045-5
  • [29] Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001
  • [30] Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774-783. doi:10.1016/j.jclepro.2014.03.018
  • [31] Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023
  • [32] Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. International Journal of Life Cycle Assessment, 15(6), 549-556. doi:10.1007/s11367- 010-0191-4
  • [33] Cassagnabčre, F., Mouret, M., Escadeillas, G., Broilliard, P., & Bertrand, A. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Construction and Building Materials, 24(7), 1109-1118. doi:10.1016/j.conbuildmat.2009.12.032
  • [34] Kubissa, W., Jaskulski, R., & Brodnan, M. (2016). Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica Civil Engineering, 60(4), 583-590. doi:http://dx.doi.org/10.3311/PPci.8614
  • [35] Kubissa,W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172, 595-603. doi:10.1016/j.proeng.2017.02.186
  • [36] Kubissa, W. (2016). Sorpcyjność betonu (Sorptivity of concrete). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • [37] Woodson, D. D. (2012). Concrete Portable Handbook (1st Edition). Butterworth-Heinemann. doi:10.1016/C2009-0-64403-2
  • [38] Kozioł,W., & Czaja, P. (2010). RockMining in Poland - Present Situation, Perspectives. Górnictwo i Geologia, 5(3), 41-58.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a41c932a-b7eb-4378-82d7-4051e69b3bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.