Czasopismo
2023
|
Vol. 23, no. 2
|
art. no. e135, 2023
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The study discusses the subject of a temperature change of TWIP steels during their deformation as a result of a conversion of the plastic deformation work into heat, based on a literature review and the authors' own research. The methods of measuring or modelling the changes of these temperatures are presented. It also points out that the heat generated during plastic deformation of TWIP steels has higher values than in the case of conventional steels, due to their higher yield stresses and limit strains. The heat has a very important effect on the microstructure of the deformed material and thus also on its properties. Its high increase can lead to e.g. a change of the deformation mechanism from twinning to dislocation glide, which is also connected with worse workability and thus also the energy consumption of the bodywork elements. On the basis of the selected literature works, the study determines the possible microstructural changes of TWIP steels related to the generated heat and demonstrates that materials with similar chemical compositions can behave differently at high deformation rates.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e135, 2023
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering, Krasińskiego 8, 40‑019 Katowice, Poland, magdalenabarbara.jablonskapriv@gmail.com
Bibliografia
- 1. Konat Ł, Jasiński R, Białobrzeska B, Szczepański Ł. Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements. Mater Sci-Pol. 2021;39(1):86-102. https://doi.org/10.2478/msp-2021-0007.
- 2. Krolicka A, Janik A, Żak A, Radwański K. The qualitative-quantitative approach to microstructural characterization of nanostructured bainitic steels using electron microscopy methods. Mater Sci-Pol. 2021;39(2):188-99. https://doi.org/10.2478/msp-2021-0017.
- 3. Jabłońska M. Mechanical properties and fractographic analysis of high manganese steels after dynamic deformation tests. Arch Metall Mater. 2014;59(3):1193-7. https://doi.org/10.2478/amm-2014-0207.
- 4. Wrobel I, Skowronek A, Grajcar A. A review on hot stamping of advanced high-strength steels: technological-metallurgical aspects and numerical simulation. Symmetry. 2022;14:969. https://doi.org/10.3390/sym14050969.
- 5. Gronostajski Z, Niechajowicz A, Polak S. Prospects for the use of the new-generation steels of the AHSS type for collision energy absorbing componenets. Arch Metall Mater. 2010;55(1):221-30.
- 6. Śmiglewicz A, Jabłońska M. The effect of strain rate on the impact strength of the high-mn steel. Metalurgija. 2015;54(4):631-4.
- 7. Grassel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater Sci Technol. 1998;14(12):1213-7. https://doi.org/10.1179/mst.1998.14.12.1213.
- 8. Kaschner G, Tome C, McCabe R, Misra A, Vogel S, Brown D. Exploring the dislocation/twin interactions in zirconium. Mater Sci Eng A. 2007;463:122-7. https://doi.org/10.1016/j.msea.2006.09.115.
- 9. Allain S, Chateau J, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater Sci Eng A. 2004;387-389:158-62. https://doi.org/10.1016/j.msea.2004.01.059.
- 10. Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129-41. https://doi.org/10.1016/j.actamat.2010.05.049.
- 11. Howang S, Ji J, Park K-T. Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels. Mater Sci Eng A. 2011;528(24):7267-75. https://doi.org/10.1016/j.msea.2011.06.020.
- 12. Morawiec M, Opara J, Garcia-Mateo C, Jimenez J, Grajcar A. Effect of Mn on the chemical driving force and bainite transformation kinetics in medium-manganese alloys. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11664-2.
- 13. Jabłońska M, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015;60(2):577-80. https://doi.org/10.1515/amm-2015-0176.
- 14. Bever M, Holt D, Titchener A. The stored energy of cold work. In: Progress in materials science, vol. 17. Oxford: Pergamon Press; 1973.
- 15. Kowalczyk K. The influence of post-deformation annealing temperature on the mechanical properties of low-carbon ferritic steel deformed by the DRECE method. Mater Sci-Pol. 2021;39(3):430-5. https://doi.org/10.2478/msp-202”.
- 16. Gottstein G, Bewerunge J, Macking H, Wollenberger H. Stored energy of 78 k tensile deformed copper crystals. Acta Metali. 1975;23:641.
- 17. Oliferuk W, Swiątnicki W, Grabski M. Rate of energy storage and microstructure evolution during the tensile deformation of austenitic steel. Mater Sci Eng A. 1993;161:55-635. https://doi.org/10.1016/0921-5093(93)90475-T.
- 18. Oliferuk W, Maj M, Raniecki B. Experimental analysis of energy storage rate components during tensile deformation of polycrystals. Mater Sci Eng A. 2004;374:77-81. https://doi.org/10.1016/j.msea.2003.12.056.
- 19. Macdougal D. Determination of the plastic work converted to heat using radiometry. Exp Mech. 2000;40:298-306. https://doi.org/10.1007/BF02327503.
- 20. Mason J, Rosakis A, Ravichandran G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the kolsky bar. Mech Mat. 1994;17:135-45. https://doi.org/10.1016/0167-6636(94)90054-X.
- 21. Taylor G, Quinney H. The latent energy remaining in a metal after cold working. Proc Roy Soc A. 1933;143:307-26. https://doi.org/10.1098/rspa.1934.0004.
- 22. Dixon P, Parry D. Thermal softening effects in type 224 carbon steel. J de Phys Ill. 1991;C3:85-92. https://doi.org/10.1051/JP4:1991311.
- 23. Kapoor R, Nemat-Nasser S. Determination of temperature rise during high strain rate deformation. Mech Mat. 1998;27:1-12. https://doi.org/10.1016/S0167-6636(97)00036-7.
- 24. Jones A, Reedlunn B, Jones EM, Kramer SL. Conversion of plastic work to heat: a full-field study of thermomechanical coupling. United States NP. 2018. https://doi.org/10.2172/1475249.
- 25. Rusinek A, Klepaczko J. Experiments on heat generated during plastic deformation and stored energy for TRIP steels. Mater Design. 2009;30:35-48. https://doi.org/10.1016/j.matdes.2008.04.048.
- 26. Lange K. Handbook of metal forming. Springer; 1994.
- 27. Forsberg C. Heat transfer principles and applications. Elsevier; 2021.
- 28. Arentoft M, Gronostajski Z, Niechajowicz A, Wanheim T. Physical and mathematical modelling of extrusion processes. J Mater Process Technol. 2000;106(1-3):2-7. https://doi.org/10.1016/S0924-0136(00)00629-4.
- 29. Hawryluk M, Rychlik M, Ziemba J, Jasiak K, Lewandowski F, Dudkiewicz Ł, Hawryluk M, Rychlik M, Ziemba J, Jasiak K, Lewandowski F, Dudkiewicz Ł. Analysis of the production process of the forked forging used in the excavator drive system in order to improve the. Currently implemented technology by the use of numerical modeling. Mater Sci-Pol. 2021;39(2):227-39. https://doi.org/10.2478/msp-2021-0020.
- 30. Krolicka A, Żak A, Kuziak R, Radwański K, Ambroziak A. Decomposition mechanisms of continuously cooled bainitic rail in the critical heat-affected zone of a flash-butt welded joints. Mater Sci-Pol. 2021;39(2):227-39. https://doi.org/10.2478/msp-2021-0020.
- 31. Gronostajski Z. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium bronze. J Mater Process Technol. 2002;125-126:119-24. https://doi.org/10.1016/S0924-0136(02)00333-3.
- 32. San Juan M, Martin O, Santos F, De Tiedra P, Daroca F, Lopez R. Application of thermography to analyse the influence of the deformation speed in the forming process. Proc Eng. 2013;63:821-8. https://doi.org/10.1016/j.proeng.2013.08.233.
- 33. Rodriguez-Martinez J, Pesci R, Rusinek A. Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature. Mater Sci Eng A. 2011;528:5974-82. https://doi.org/10.1016/j.msea.2011.04.030.
- 34. Vazquez-Fernandez N, Nyyssonen T, Isakov M, Hokka M, Kuokkala V. Uncoupling the effects of strain rate and adiabatic heating on strain induced martensitic phase transformations in a metastable austenitic steel. Acta Mater. 2019;176(1):134-44. https://doi.org/10.1016/j.actamat.2019.06.053.
- 35. Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246-59. https://doi.org/10.1016/j.jmatprotec.2016.11.023.
- 36. Nowacki W, Rusinek A, Gadaj S, Klepaczko J. Temperature and Strain Rate Effects on TRIP Sheet Steel. Measurement of temperature by infrared thermograph. In: XXI International Congress of Theoretical And Applied Mechanics, Warsaw, Poland, 2004, pp. 15-21.
- 37. Rusinek A, Klepaczko J, Gadaj P, Nowacki W. Plasticity of new steels used in automotive industries-temperature measurements by thermo-vision. SAE World Congress Detroit. 2005. https://doi.org/10.4271/2005-01-1325.
- 38. Rusinek A, Zaera R, Klepaczko J, Cheriguene R. Analysis of inertia and scale effects on dynamic neck formation during tension of sheet steel during tension of sheet steel. Acta Mater. 2005;53:5387-400. https://doi.org/10.1016/j.actamat.2005.08.019.
- 39. Pierce D, Jimenez J, Bentley J, Raabe D, Wittig J. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Acta Mater. 2015;100:178-90. https://doi.org/10.1016/j.actamat.2015.08.030.
- 40. Saeed-Akbari A, Mosecker L, Schwedt A, Bleck W. Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: part I. Mechanism maps and work-hardening behavior. Metall Mater Trans A. 2012;43:1688-704. https://doi.org/10.1007/s11661-011-0993-4.
- 41. Rahman K, Vorontsov V, Dye D. The dynamic behaviour of a twinning induced plasticity steel. Mater Sci Eng A. 2014;589:252-61. https://doi.org/10.1016/j.msea.2013.09.081.
- 42. Cai W, Wang C, Sun C, Qian L, Fu M. Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Mater Sci Eng A. 2022;851:143657. https://doi.org/10.1016/j.msea.2022.143657.
- 43. Park J, Kang M, Sohn S, Kim S-H, Kim H, Kim N, Lee S. Quasistatic and dynamic deformation mechanisms interpreted by microstructural evolution in twinning induced plasticity (TWIP) steel. Mater Sci Eng, A. 2017;684:54-63. https://doi.org/10.1016/j.msea.2016.12.037.
- 44. Madivala M, Schwedt A, Prahl U, Bleck W. Strain hardening, damage and fracture behavior of al-added high MN TWIP steels. Metals. 2019;9(3):367. https://doi.org/10.3390/met9030367.
- 45. Majidi O, De Cooman B, Barlat F, Lee M-G. Thermomechanical response of a TWIP steel during monotonic and non-monotonic uniaxial loading. Mater Sci Eng A. 2016;674:276-85. https://doi.org/10.1016/j.msea.2016.08.002.
- 46. Lee S-J, Kim J, Kane S, De Cooman B. On the origin of dynamic strain aging in twinning-induced plasticity steels in twinning-induced plasticity steels. Acta Mater. 2011;59(17):6809-19. https://doi.org/10.1016/j.actamat.2011.07.040.
- 47. Jabłońska M, Jasiak K, Kowlaczyk K, Bednarczyk I, Skwarski M, Tkocz M, Gronostajski Z. Deformation behaviour of high-manganese steel with addition of niobium under quasi-static tensile loading. Mater Sci-Pol. 2022;40(3):1-11. https://doi.org/10.2478/msp-2022-0029.
- 48. Benzing J, Liu Y, Zhang X, Luecke W, Ponge D, Dutta A, Oskay C, Raabe D, Wittig J. Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: influences of strain rate and phase constituents. Acta Mater. 2019;177:250-65. https://doi.org/10.1016/j.actamat.2019.07.036.
- 49. Madivala M, Bleck W. Strain rate dependent mechanical properties of TWIP steel. J Min Metals Mater Soc (TMS). 2019;71:1291-302. https://doi.org/10.1007/s11837-018-3137-0.
- 50. Lee S, Estrin Y, De Cooman B. Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel. Metall Mater Trans A. 2014;45:717-30. https://doi.org/10.1007/s11661-013-2028-9.
- 51. Murr L, Meyers M, Niou C-S, Chen Y, Pappu S, Kennedy C. Shock-induced deformation twinning in tantalum. Acta Mater. 1997;45(1):157-75. https://doi.org/10.1016/S1359-6454(96)00145-0.
- 52. Armstrong R, Worthington P. Metallurgical effect at high strain rate. In: Rohde RW, Butcher BM, Holland JR, Karnes CH, editors. Dislocation dynamics. New York: Plenum Press; 2012.
- 53. Zerilli F, Armstrong R. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816-25. https://doi.org/10.1063/1.338024.
- 54. Vergnol J, Grilhe J. Relationship between extrinsic stacking faults and mechanical twinning in F.C.C. solid solutions with low stacking fault energy. J Phys France. 1984;45:1479-90. https://doi.org/10.1051/jphys:019840045090147900.
- 55. Jabłońska M, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Proc Manuf. 2019;27:91-7. https://doi.org/10.1016/j.promfg.2018.12.049.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a3ba210c-2833-4ecd-8118-3a3b325fd033