Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 54--63
Tytuł artykułu

Characteristics of Tofu Wastewater From Different Soybeans and Wastewater at Each Stage of Tofu Production

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tofu wastewater is a liquid by-product of the tofu production process that typically contains high levels of organic matter, such as proteins, carbohydrates, and fats, as well as other compounds, such as nitrogen, phosphorus, potassium, and COD. Tofu wastewater COD levels can vary depending on the type of soybeans used in the production process and the stages of the production process. This study aimed to analyze the characteristics of tofu wastewater from various types of soybeans and the characteristics of wastewater at each stage of the production process. The research methods used were field research and laboratory tests. Field research was conducted by collecting samples from different types of soybeans and analyzing them in the laboratory. Meanwhile, laboratory tests were run by analyzing samples for various parameters such as Soybeans Protein, Chemical Oxygen Demand (COD), total suspended solids (TSS), Biochemical Oxygen Demand (BOD), ammonia, and fat oil. The results showed that Wonogiri Soybeans had the highest protein parameter, 19%. As far as the wastewater of seed samples, the Wonogiri Seed sample had the highest parameter results for TSS, COD, ammonia, and BOD, which are 444 mg/L, 4583.33 mg/L; 13.86 mg/L; and 3.481 mg/L, respectively. As for the fat oil parameter, the Red Seed sample achieved the highest result of 6264 mg/L. In the case of the samples from each washing stage, it is known that the washing sample parameter results are lower than the seed samples. The Red 1st Washing sample had the highest TSS, COD, fat oil, and BOD values, amounting to 316 mg/L, 4666.67 mg/L, 356 mg/L, and 2053.71 mg/L, respectively. In comparison, the highest fat oil parameter corresponded to the Wonogiri 1st Washing sample with a value of 11.78 mg/L. The B/C ratio of all samples is > 0.1 and is in the biodegradable zone. Thus, the samples are not only able to be treated through biological processes, but also able to be treated through physical and chemical processes to avoid the length of time for biological decomposition due to the acclimatization process of microorganisms to the samples.
Wydawca

Rocznik
Strony
54--63
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Doctoral Program of Environmental Sciences, Diponegoro University, Prof. Soedharto, S.H. Street, Semarang 50275, Indonesia, nurandanihardyanti@gmail.com
  • Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Prof. Soedharto, S.H. Street, Semarang 50275, Indonesia
autor
  • Department of Environmental Science, UIN Raden Mas Said Surakarta, Pandawa Street, 57168, Pucangan, Kartasura, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Prof. Soedharto, S.H. Street, Semarang 50275, Indonesia
Bibliografia
  • 1. Andarwulan N., Nuraida L., Adawiyah D.R., Triana R.N., Agustin D., Gitapratiwi D. 2018. Pengaruh perbedaan jenis kedelai terhadap kualitas mutu tahu. Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 5(2), 66–72.
  • 2. Anshah A.S., Suryawan I.W.K. 2018. Efektifitas Penambahan substrat pada pengolahan biologis limbah cair tahu menggunakan sistem CSTR. ENVIROSAN: Jurnal Teknik Lingkungan, 1(2), 46–51.
  • 3. Arziyah D., Yusmita L., Ariyetti A. 2019. Analisis mutu tahu dari beberapa produsen tahu di Kota Padang. Jurnal Teknologi Pertanian Andalas, 23(2), 143–148.
  • 4. Asmara B. 2019. Pengaruh Pemberian Pupuk Organik Solid dan Pemberian POC Limbah Cair Tahu Terhadap Pertumbuhan dan Produksi Tanaman Jagung Manis (Zea mays saccharata L). Universitas Medan Area.
  • 5. Asril M., Oktaviani I., Leksikowati S.S. 2019. Isolasi Bakteri Indigeneous dari Limbah Cair Tahu dalam Mendegradasi Protein dan Melarutkan Fosfat (Isolation of Indigineous Bacteria from Tofu Wastewater for Degrading Proteins and Solubilizing Phosphate). Jurnal Teknologi Lingkungan Vol, 20(1).
  • 6. Bitton G. 2005. Wastewater microbiology: John Wiley & Sons.
  • 7. Elystia S., Nasution F.H.M., Sasmita A. 2023. Rotary Algae Biofilm Reactor (RABR) using microalgae Chlorella sp. for tofu wastewater treatment. Mater. Today: Proc.
  • 8. Eslami A., Kashani M.R.K., Khodadadi A., Varank G., Kadier A., Ma P.-C., Madihi-Bidgoli S., & Ghanbari F. 2021. Sono-peroxi-coagulation (SPC) as an effective treatment for pulp and paper wastewater: focus on pH effect, biodegradability, and toxicity. Journal of Water Process Engineering, 44, 102330.
  • 9. Faisal M., Gani A., Mulana F., Daimon H. 2016. Treatment and utilization of industrial tofu waste in Indonesia. Asian Journal of Chemistry, 28(3).
  • 10. Faisal M., Mulana F., Gani A., Daimon H. 2015. Physical and chemical properties of wastewater discharged from Tofu industries in Banda Aceh city, Indonesia. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 1053–1058.
  • 11. Hadiyanto H., Christwardana M., Pratiwi W.Z., Purwanto P., Sudarno S., Haryani K., & Hoang A.T. 2022. Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere, 287, 132275.
  • 12. Henze M., Harremoes P., Jansen J.L., Arvin E. 2002. Wastewater treatment: biological and chemical process: Springer.
  • 13.Jaya D., Sulistyawati E. 2022. Kinetika Pengolahan Limbah Cair Industri Tahu secara Biologi Menggunakan Biofilm dengan Sistem Batch. Eksergi, 9(1), 6–10.
  • 14. Karamah E.F., Anindita L., Amelia D., Kusrini E., Bismo S. 2019. Tofu industrial wastewater treatment with ozonation and the adsorption method using natural zeolite. International Journal of Technology, 10(8).
  • 15. Koch M., Yediler A., Lienert D., Insel G., Kettrup A. 2002. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere, 46(1), 109–113.
  • 16. Lestari D.S. 2020. Evaluasi Kinerja Instalasi Pengolahan Air Limbah Domestik (Studi Kasus: IPAL Domestik Waduk “X”, Jakarta). Jurnal Sumber Daya Air, 16(2), 91–102.
  • 17. Lopez M.J., Mohiuddin S.S. 2020. Biochemistry, essential amino acids.
  • 18. Pagoray H., Sulistyawati S., Fitriyani F. 2021. Limbah cair industri tahu dan dampaknya terhadap kualitas air dan biota perairan. Jurnal Pertanian Terpadu, 9(1), 53–65.
  • 19. Pradana T.D., Suharno S., Apriansyah A. 2018. Pengolahan limbah cair tahu untuk menurunkan kadar TSS dan BOD. Jurnal Vokasi Kesehatan, 4(2), 56.
  • 20. Purwaningsih E. 2007. Cara Pembuatan Tahu dan Manfaat Kedelai: Ganeca Exact.
  • 21. Raivaldi M., Hadisoebroto R., Hendrawan D. 2021. The use of subsurface constructed wetland for the treatment of tofu industrial wastewater in Semanan, Jakarta Barat. Paper presented at the IOP Conference Series: Earth and Environmental Science.
  • 22. Rasyid H. 2021. Stop Ketergantungan Impor Kedelai. Arsip Publikasi Ilmiah Biro Administrasi Akademik.
  • 23. Rice E., Baird R., Eaton A. 2017. Standard methods for the examination of water and wastewater 23rd ed. American Water Works Association.
  • 24. Samudro G., & Mangkoedihardjo S. 2010. Review on bod, cod and bod/cod ratio: a triangle zone for toxic, biodegradable and stable levels. International Journal of Academic Research, 2(4).
  • 25. Silverberg L.J. 2019. What is an organic substance? Foundations of Chemistry, 1–8.
  • 26. Simanjuntak T.R. 2021. Penetapan Kadar Protein pada Tahu Sumedang dan Tahu Cina secara Spektrofotometri UV-Vis. Universitas Sumatera Utara.
  • 27. Srikandi F. 1992. Polusi Air dan Udara. PT. Kanisius, Bogor.
  • 28. Sulistia S., Septisya A.C. 2019. Analisis Kualitas Air Limbah Domestik Perkantoran. Jurnal Rekayasa Lingkungan, 12(1).
  • 29. Tian Y., Kumabe K., Matsumoto K., Takeuchi H., Xie Y., Hasegawa T. 2012. Hydrolysis behavior of tofu waste in hot compressed water. Biomass and Bioenergy, 39, 112–119.
  • 30. Verma A., Wei X., Kusiak A. 2013. Predicting the total suspended solids in wastewater: a datamining approach. Eng. Appl. Artif. Intell., 26(4), 1366–1372.
  • 31. Vyrides I., Stuckey D.C. 2017. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Critical reviews in biotechnology, 37(7), 865–879.
  • 32. Wardhana W.A. 1995. Dampak pencemaran lingkungan. Andi Offset. Yogyakarta. Hal, 93.
  • 33. Weigel M.J.D. 2022. Consumer preferences for tofu characteristics in Sweden.
  • 34. Xiao K., Abbt-Braun G., Horn H. 2020. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. Water research, 187, 116441.
  • 35. Yulianto R., Prihanto R.L., Redjeki S., Iriani I. 2020. Penurunan Kandungan COD dan BOD pada Limbah Cair Industri Tahu dengan Metode Ozonasi. ChemPro, 1(1), 9–15.
  • 36. Zunidra Z., Sondang S., Supriatna S. 2022. Treatment of tofu liquid waste using anaerobic-aerobic biofilm aeration system to reduce pollution. Environmental Health Engineering And Management Journal, 9(4), 391–397.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a37c0b3e-da85-469e-b333-90808a4bd789
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.