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ABSTRACT 

The plane wave expansion method was implemented in modelling and simulating the band 

structures of two dimensional photonic crystals with square, triangular and honeycomb lattices with 

circular, square and hexagonal dielectric rods and air holes. Complete band gaps were obtained for 

square lattice of square GaAs rods and honeycomb lattice of circular and hexagonal GaAs rods as 

well as triangular lattice of circular and hexagonal air holes in GaAs whereas square lattice of square 

or circular air holes in a dielectric medium  = 18 gave complete band gaps. The variation of these 

band gaps with dielectric contrast and filling factor gave the largest gaps for all configurations for a 

filling fraction around 0.1.The gap maps presented indicated that TM gaps are more favoured by 

dielectric rods while TE gaps are favoured by air holes. The geometrical gap maps operating at 

telecommunication wavelength  = 1.55 m showed that a complete band gap can be achieved for 

triangular lattice with circular and hexagonal air holes in GaAs and for honeycomb lattice of circular 

GaAs rods.  

 

Keywords: Photonic crystal; square lattice; triangular lattice; honeycomb lattice; plane wave 

expansion; mode field distribution; GaAs; dielectric contrast; filling fraction; gap maps  

 

 

 

 

1.  INTRODUCTION 

 

Photonic crystals are periodic dielectric structures employed in a systematic way to 

achieve a band gap in a desired wavelength in applications of optical and electronic devices. 

These periodic structures are artificially arranged with the periodicity in micrometer to 

millimetre scales. In analogy to electrons in a semiconductor crystal, in photonic band gap 

materials, electromagnetic waves (EM) propagate in a structure with a periodically modulated 

dielectric constant. The periodic refractive index leads to the formation of photonic band gap 

not allowing any photons with a frequency in the range of the band gap to propagate. These 

artificial structures can have unlimited forms. Photonic band gap materials have already 

provided the possibilities of creating various novel applications with operating frequencies 

ranging from the microwave to the optical regime  

Despite the early studies by Lord Rayleigh [1] in 1887 and Bykov [2] in 1972 on one 

dimensional photonic crystals, an extensive interest in these materials became established 

only after the independent studies of Yablonovitch [3] and John [4], concentrating on 
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engineering possibility of higher dimensional structured materials exhibiting range of 

frequencies at which the propagating of EM waves is not allowed. Using plane wave 

expansion method Ho et al. [5] predicted the existence of complete band gap for a diamond 

lattice of spheres and established its dependence on dielectric contrast and filling fraction. By 

means of iterative optimization of approximate initial solutions through a parallel computing 

approach via block matrix diagonalization, Johnson and Joannopoulos [6] reduced the 

computational difficulty. The plane wave expansion method was adopted by Skoda [7] to 

compute the diffraction of two dimensional periodic band gap materials with finite thickness. 

Labilloy et al. [8] and Benisty et al. [9]
 
used this method to predict the diffraction of 

triangular and square lattices of air holes in plane wave guides. Using analytical methods, an 

algorithm for computation of the spectrum and eigenmodes for two dimensional photonic 

crystals of square air rods was developed by Philal and Maradudin [10]. Villenuve and Piché 

[11] investigated the square lattice with both square and circular rods.  

Due to fabrication difficulties two dimensional photonic crystals are more favoured 

than three dimensional photonic crystals. The plane wave expansion method applicable to 

any type of non-dispersive dielectric functions was implemented in the present work in 

modelling and simulating the band structures of two dimensional photonic crystals with 

square, triangular and honeycomb lattices. For the periodic dielectric function, the magnetic 

field vector was expanded using Bloch theorem leading to eigenvalue equation in matrix 

form. Standard eigenvalue equation was solved for different two dimensional lattice 

geometries for dielectric rods in air and air holes in dielectric mediums with circular, square 

and hexagonal cross sectional shapes. The effects of the parameters on the band gaps were 

studied and mode field distributions were calculated. The largest band gap generated was 

calculated by taking over all the filling fractions. The conventional gap maps were obtained 

by varying the radius or the width against lattice constant for both dielectric rods and air 

holes with different cross sections. The geometrical gap maps which give important statistical 

information in developing photonic crystal based devices were also calculated for 

telecommunication wavelength. Only the important diagrams are presented. 

 

 

2.  PLANE WAVE EXPANSION 

 

Since the propagation of light in a photonic crystal is governed by Maxwell equations, 

the propagation of EM waves in a macroscopic, homogeneous, isotropic dielectric material 

with real dielectric constant ( )r  with no dispersion was considered, restricting the 

conditions to space free of charge sources. Magnetic permeability ( )r was assumed to be a 

constant. In a periodic dielectric structure, the Maxwell’s equations for the electromagnetic 

waves can be written in terms of electric field E and magnetic field strength H with angular 

frequency   as, 
  

( ) 0                 ( ) ( ) 0

( ) ( ) 0           ( ) ( ) ( ) 0 (1)
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These can be further simplified to [2], 
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Since ε(r) is periodic, magnetic strength H can be expanded using the Bloch theorem: 
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where Gi are the reciprocal lattice vectors, 1 2 3, ,b b b  are the basis vectors in the reciprocal 

space, h1, h2, h3 are integers and ˆe are the two orthogonal unit vectors, both perpendicular to 

k +Gi , representing the indices 1 and 2. Substituting equation 3 into 2 and the matrix 

equation,  
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can be obtained. For 2D lattices, the material is homogeneous in z direction while periodic 

along x and y directions. The mirror symmetry along the z axis allows to classify the modes 

by separating them into two distinct polarization, the transverse-electric (TE) mode and the 

transverse-magnetic (TM) mode. Therefore equation 4 decoupled in to two equations which 

makes two unit vector sets unnecessary. The TM polarized mode and TE-polarized mode are 

given by equations 5 and 6 respectively 
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The absolute parts of these fields are used to calculate mode fields. 1( )  G G' is the 

inverse of the Fourier transform matrix of ε(r). In this standard eigenvalue problem, the 

difficulty in the analysis of the eigenvalue problem lies on Fourier transformation of the 

dielectric function. Performing a numerical fast Fourier transform is subjected to convergence 

problem and symmetry conditions become complex for some problems. The Fourier 

component of dielectric constant ( ) G is, 
 

1
( ) ( ) i

A

r e dr
A

    
G r

G   (7) 

 

where the integration is performed over the area A of the one unit cell lattice. Periodic 

dielectric function in real space can be further simplified to,  
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where f is the filling factor defined as the fraction of area occupied by the localized medium 

in one unit cell  and  a and  b refer to the dielectric constants of the localized medium and 

the background respectively. The structure factor S(G), depend only on the geometry of the 

localized medium and the lattice structure. This is given by, 

 

1
( ) .

d
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S e dr
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G r
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The integration is carried over the area A occupied by the localized medium in the unit 

cell. The structure factors for various shapes [12] are tabulated in Table 1.  

 
Table 1. Structure factor for different shapes of rods.

 

 

Shape Structure factor 

Circular 
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x
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It is convenient to calculate for TM polarized mode, the displacement field D and for 

TE polarized mode the magnetic field H and these are given by 
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The plane wave expansion method was used to simulate band structure of different 

photonic lattices formed from rods of different cross sectional shapes. For each photonic 

crystal structure, the possibility of TE, TM and complete band gap was studied carefully 

using band diagrams.  
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3.  SQUARE LATTICE  

 

For a two dimensional square photonic crystal formed by circular dielectric rods of 

radius r with lattice constant a, the basis vectors and the first Brillouin zone are shown in 

Figure 1. The band structure and the density of states for a square lattice with basis lattice 

vectors (1,0,0)a  and (0,1,0)a  with the atom positioned at (0,0,0)a  formed from circular 

GaAs dielectric rods ( 13)   of radius 0.16r a  with filling fraction 2 2/ 0.08f r a   

and square GaAs dielectric rods of width 0.6w a  with filling fraction 2 2/ 0.06f w a   in 

air are shown in Figure 2. The frequency is expressed as a dimensionless ratio / 2a c   in 

the vertical axis and the parallel plane wave vector along the triangular edge of the 

irreducible Brillouin zone MX in the x axis. For the square lattice formed from circular 

GaAs dielectric rods, although a complete band gap was observed for TM mode in all 

direction between first and second band, there was no gap for the TE mode. For the square 

lattice formed from square GaAs dielectric rods, the TM band gaps are observed for three 

frequency ranges, and the density of states indicate that there are no modes in the band gap. 

The band gap observed between first and second bands can be useful in designing band stop 

filters and polarisers for lower frequencies. The yellow region at normalized high optical 

frequency range between 0.69-0.65 indicates a complete gap.  

 

 
1(a) 

 
 

 
 

 

1(b) 

 
Fig. 1. (a) Two dimensional square photonic crystal of circular rods of radius r with lattice constant a.      

(b) The unit cell, basis lattice vectors and first Brillouin zone.  
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Figure 3.1: The photonic band structure for a square array of square  dielectric rods in air 

with w=0.6a, a=13 and b=1  
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Fig. 2. The photonic band structure (2(a)) and density of states (2(b)) for a square array for dielectric 

rods in air a = 13 and b = 1 (a) circular rods ( 0.16 , 0.08r a f  ), (b) square rods  

( 0.6 , 0.36w a f  ). 
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Figure 5.8 – Mode field distribution of Square lattice of square rods (w=0.6a) a=13 and b=1.                            

a) Displacement fields of TM modes for band 1 and band 2.  b) Magnetic fields of TE modes 

for band 1 and band 2. Modes are shown at the  point (top), the X point (middle) and the M 

 
 

                      D field for TM mode                                                  H field for TE mode 
  

3(b) 
 

Fig. 3. Mode field distribution of square lattice. D fields of TM modes and H field of TE modes for 

band 1 and band 2 at  point (top), M point (middle) and X point (bottom) for (a) circular rods with 

0.16r a  and (b) square rods with 0.6w a in a medium a = 13 and b = 1 
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For the states immediately below the gap (band 1) and above the gap (band 2), the 

mode field distributions were calculated using equations 10 and 11 for (0,0,0), 

X ( )(1,0,0)a  and M ( )(1,1,0)a points for circular and square GaAs rods in air for TM and 

TE modes and these are presented in the Figure 3(a) and 3(b) respectively. The dark red and 

blue represent the high  region. The magnitude of the intensity is denoted by the colour 

variation, red denoting a positive field and blue denoting a negative field. Displacement field 

at -point is same for each unit cell. Since the X-point is at the edge of Brillouin zone, the 

fields alternate in each unit cell in the direction of the kz wave vector, making the wave fronts 

parallel to y-axis. At M point, phases of the neighbouring cells alternate with each other 

resulting a check-board pattern, similar to a plane wave propagating in the x+y direction. The 

displacement field patterns for band 1 (dielectric band) shows a high energy concentration 

inside the high  region and the field pattern of band 2 (air band) shows that some energy 

ofhigh- regions is expelled into lower- region. For circular rods, at X and M points, the first 

mode is a monopole and the second mode is a dipole whereas at -point both modes are 

monopoles. For square rods, at X,  and M points, the first mode is a monopole and second 

mode is a dipole leading to a TM band gap between band 1 and band 2.    

Since circular and square dielectric rods in air give rise to large TM band gaps, the 

variation of this gap width   to mid gap frequency m  ratio with dielectric contrast and 

filling factor were calculated and these are presented in Figure 4. The largest band gap 

generated was calculated by taking over all the filling fractions. Minimum dielectric index 

contrast of 3 was enough to open a TM band gap for both square and circular rods. The 

largest band gap width for a dielectric contrast increased gradually and tended to a constant. 

A large band gap width, about 40 % gap width to mid gap ratio was observed for GaAs rods. 

The circular and square rods behaved in a similar way for TM mode, the highest gap 

occurring for a filling factor of 0.1 with corresponding radius 0.178a and width of 0.316a 

respectively. In order to have a large TM gap, dielectric rods of smaller radius or width must 

be used. 
        

  

 

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Variation of Maximum band gap width with dielectric contrast 

     square lattice circular dielectric rods TM gap          

Dielectric Contrast (
a
/

b
)

( 


/ 
m

) m
a

x

 
4(a) 



International Letters of Chemistry, Physics and Astronomy 5 (2014) 58-88                                                                                                                                  

66 

  

 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Variation of TM band gap with filling factor 

of a 2-D square lattice

Filling Factor (f)

( 


/ 
m

) m
a

x

Circular rods

Square rods

 

 
4(b) 

 

Fig. 4. for square lattice of circular and square GaAs rods in air (a) maximum TM band gap width to 

mid gap ratio with dielectric contrast and (b) TM band gap width to mid gap ratio  

with filling factor.  
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Fig. 5. Band structures of two dimensional square photonic crystals of (a) circular air columns of 

radius 0.48r a  and (b) square air holes of width 0.85w a  in a medium 1, 18, 0.72.a b f     

 

 

By increasing the dielectric contrast, complete band gaps for both polarizations can be 

obtained for air holes drilled in dielectric mediums. The band diagram obtained for a square 

lattice with circular air holes radius 0.48a and square air holes with width 0.85a drilled in a 

dielectric medium 18   is shown in Figure 5. For circular holes the TM band gap between 

third and fourth bands and TE band gap between second and third bands overlap at around 

0.386, giving rise to a complete band gap width of 0.023( / 2 )a c  .  

This gap is useful in fabricating a perfect dielectric mirror from a photonic crystal. For 

square holes a complete band gap for both polarizations was observed between normalized 

frequencies 0.36 and 0.38. D fields of TM modes for band 3 and band 4 and H fields of TE 

modes for band 1 and band 2 for square air holes of width 0.85w a  drilled in a dielectric 

medium with 18   is presented in Figure 6. The mode field distribution patterns for the 

structure concentrate most of the energy in the high  region. Slight difference in the 

displacement field patterns for the modes opens the TM band gap for high dielectric contrast. 

The complete gap width to mid gap frequency ratio with dielectric contrast and filling 

factor for circular and square air holes in a dielectric medium is presented in Figure 7. The 

array of circular holes requires a significant lower dielectric contrast to generate a band gap 

than an array of square holes. Minimum index contrast needed to open a photonic gap for 

circular rods was 7.5 whereas for square holes it was 13. The lattice consisting of circular 

holes has a large gap to mid gap ratio when the dielectric contrast is below 16.3.  
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Fig. 6. Mode field distribution of square lattice of square air holes a = 1 and b = 18 with 0.85w a . 

D fields of TM modes for band 3 and band 4 and H field of TE modes for band 1 and band 2 at  

point (top), M point (middle) and X point (bottom). 

 

 

The variation of the complete gap width with filling factor is presented Figure 7(b) for 

the background material with a dielectric constant 18. The overlap of TM and TE waves 

could be achieved for smaller filling fractions in square rods than circular rods. For this 

particular dielectric contrast, array of square rods yields, a larger gap to mid gap ratio about 9 

%. The discontinuities of the figure indicate the change in the upper and lower bands of the 

overlap TM and TE gaps. 
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Fig. 7. (a) Maximum complete band gap width to mid gap ratio with dielectric contrast and (b) 

complete band gap width to mid gap ratio with filling factor for square lattice of air holes with 

 a = 1, b = 18. 

 

 

4.  TRIANGULAR LATTICE  

 

Two dimensional triangular photonic crystal with a lattice constant a, formed by 

circular air columns of radius r in a dielectric medium is shown in Figure 8 [12]. The basis 

lattice vectors are (1,0,0)a  and (1/ 2, 3 / 2,0)a  with atom positioned at (0,0,0) .a  The band 

structure obtained for circular air holes of radius 0.48r a drilled in GaAs presented in figure 

9(a), indicate a large complete band gap between 0.403-0.512 ( / 2 )a c  with a mid gap 

at 0.476( / 2 ).a c   Gap to mid gap ratio is 19.15 %. If the mid band wavelength is chosen as 

the telecommunication wavelength 1.55 ,m   then the value of the lattice constant, filling 

fraction and the radius of the rod must have the values 0.7373a m , 0.84f  , 

0.4096r m  respectively.  

 

 
 

A 
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B 

 
Fig. 8. A: (Right) A two dimensional photonic crystal of air columns of radius r in dielectric 

substrate. (Left) Triangular lattice with a lattice constant a. B: (Right) Briliouin zone. (Left) Unit cell 

in blue and basis lattice vectors. 

 

 

Triangular lattice can be also formed from hexagonal cross sectional air holes having 

the same physical shape as the lattice. For hexagonal air holes with width size 0.48w a  

drilled in GaAs, although a complete band gap was observed, the band gap width was smaller 

than that of circular air holes (Figure 9(b)). Gap mid ratio was 8 %.   
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Fig. 9. Band structure for two dimensional triangular photonic crystals of (a) circular air holes of 

radius 0.48 , 0.84r a f   and (b) hexagonal air holes with 0.48 , 0.69w a f  in GaAs. 

 

For two dimensional triangular photonic crystals formed from circular and hexagonal air 

holes drilled in GaAs, the mode field distributions were calculated for points at the upper and 

lower frequencies of the corresponding bands. Figure 10 shows the mode field distribution 

pattern of circular air holes drilled in GaAs for displacement field for TM modes at  point of 

band 2 and K point of band 3 as well as magnetic field distribution for TE modes at band 1 

and 2 at K point and band 2 at M point.  

 

              Band 2 at                    Band 3 at K                     Band 1&2 at K                  Band 2 at M            

 

                     Displacement field                 Magnetic field                                                   

    Band 2 at  point         Band 3 at K point       Band 1&2 at K point     Band 2 at   M point      Figure 6.4 – Mode field distribution of triangular lattice of circular rods (r=0.48a) a=1 and b=13 

 
    D field for TM mode                                            H field for TE mode 

 
Fig. 10. Mode field distribution of triangular lattice of circular air holes drilled in GaAs. 0.48r a , 

 a = 1 and b = 13. 
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Fig. 11. For triangular lattice of circular and hexagonal air holes, (a) maximum complete band gap 

width to mid gap ratio with dielectric contrast and (b) complete band gap width to mid gap ratio with 

filling factor for a  = 1, b  = 13. 

 

 

The distribution shows a large difference, the modes at  point of band 2 concentrating 

more energy in the ‘spots’ while the modes at K point of band 3 concentrating more energy in 

the ‘veins’. The difference in magnetic field distributions between corresponding points, 
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result a TE gap between the respective bands. The largest complete band gap generated in a 

triangular lattice with circular and hexagonal air holes with dielectric contrast are shown in 

Figure 11. According to the figures, both arrays of circular holes and hexagonal holes require 

lower dielectric contrast to generate a complete band gap. The minimum index contrast 

required for both circular and hexagonal air holes is 7. The hexagonal holes have a large 

optimal gap to mid gap ratio for dielectric contrast below 13. The variation of the complete 

gap width with the filling factor is presented in Figure 11(b) for GaAs background material. 

A photonic gap can be obtained for smaller filling fractions for hexagonal holes than that for 

circular holes. For this particular dielectric contrast, both kind of arrays yielded nearly equal 

maximum gap width of about 18 % gap ratio. For both two dimensional triangular photonic 

crystals formed by circular ( 0.2 , 0.15)r a f   and hexagonal ( 0.2 , 0.12)w a f  GaAs 

dielectric rods, although a TM gap width of 0.17( / 2 )a c   was observed around mid gap 

frequency 0.35( / 2 ),a c   no TE gap was observed. The variation of gap width to mid gap 

frequency ratio with dielectric contrast for these crystals are shown in Figure 12.  
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Both variations look exactly the same for the circular and hexagonal rods. The 

minimum index contrast to open a TM gap for both these rods occurs for the dielectric 

contrast of 2. The variation of gap width to mid gap frequency ratio with filling fraction for 

GaAs rods in air is presented in Figure 12(b). Since this is a disconnected lattice, the largest 

gap occurs for small filling fractions. The TM band gap for triangular lattice does not depend 

on the shape of the rods. Both variations look exactly the same for the circular and hexagonal 

rods. The minimum index contrast to open a TM gap for both these rods occurs for the 

dielectric contrast of 2.  
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The variation of gap width to mid gap frequency ratio with filling fraction for GaAs 

rods in air is presented in Figure 12(b). Since this is a disconnected lattice, the largest gap 

occurs for small filling fractions. The TM band gap for triangular lattice does not depend on 

the shape of the rods. 
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Fig. 12. For triangular lattice of circular and hexagonal GaAs rods (a) the maximum TM band gap 

width to mid gap ratio with dielectric contrast and (b) TM band gap width to mid gap ratio with filling 

factor. 

 

 

5.  HONEYCOMB PHOTONOIC LATTICE 

 

For the two dimensional honycomb lattice or a hexaganoal lattice, the unit cell, basis 

lattice vectors and Brillouin zone are shown in Figure 13.  
 

 

1a  

2a  

 ….

 

Г 

M K 

. 

 

Fig. 13. 2D honycomb lattice. Left-  unit cell and basis lattice vectors. Right- Brillouin zone.  
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Fig. 14. Band structure for two dimensional honycomb crystal of GaAs (a) circular rods 

with 0.23 , 0.13r a f   and (b) hexagonal rods with 0.3 , 0.54w a f  in air. 



International Letters of Chemistry, Physics and Astronomy 5 (2014) 58-88                                                                                                                                  

76 

The basis lattice vectors are (1,0,0) 3a  and (1/ 2, 3 / 2,0) 3a  with atoms positioned 

at (1/ 2, 3 / 2,0)a  and ( 1/ 2, 3 / 2,0)a  . The structure factor for honey comb lattice with 

hexagonal rods presented in Table 1, must be multiplied by an additional term cos( / 2)yG a . 

The band structure for 2D honey comb lattice with circular and hexagonal GaAs dielectric 

rods of radius 0.23a  and width 0.3w a respectively are shown in Figure 14.  

A complete band gap for circular GaAs rods was observed between the seventh and 

eight TM bands and between the fifth and the sixth TE bands. The mid gap ratio is 6% while 

the width of the complete gap is 0.43( / 2 )a c  . For hexagonal GaAs rods, a complete band 

gap for both polarizations was observed between the sixth and seventh TM bands and third 

and fourth TE bands. The photonic gap width is 0.069( / 2 )a c   around a mid gap 

frequency 0.3( / 2 )a c  . Gap to mid gap ratio is 20.91 %. 

The dielectric contrast and the filling factor for honeycomb lattice with circular 

dielectric rods and hexagonal dielectric rods in air are shown in Figure 15. A maximum value 

for the gap width to mid gap frequency ratio exist around  = 15.  

The minimum dielectric contrast needed (7.5) to open a complete band gap was 

slightly higher than that for a triangular lattice. The largest gap occurs for a filling fraction of 

0.12. The range of filling fraction for GaAs rods for which a complete gap could be observed 

is limited. The minimum dielectric index contrast to open a gap and the filling factor for the 

highest gap for the different photonic structures are tabulated in Table 2. 
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Fig. 15. Variation of maximum complete band gap width to mid gap ratio with (a) dielectric contrast 

and (b) filling factor for honeycomb lattice with circular dielectric rods.  

 

Table 2. The minimum dielectric index contrast to open a photonic gap and the filling factor for highest gap 

for different photonic structures. 

 

Crystal 

lattice 
Structure 

Minimum dielectric 

index contrast to 

open a photonic gap 

Filling factor and its value for 

highest gap 

Square Square rods in air 3 (TM) 2 2f w a ,  0.13 (a=13) 

 Circular rods in Air 3 (TM) 
2 2f r a  , 0.13 (a=13) 

 Square air holes 13 0.82 (b=18) 

 Circular air holes 7.5 0.76  (b=18) 

Triangular Circular rods in Air 2 2 22 / 3f r a , 0.13 (a=13) 

 Hexagonal rods in Air 2 2 26f w a , 0.10 (a=13) 

 Circular air holes 7 0.84 (b=13) 

 Hexagonal air holes 7 0.75 (b=13) 

Hexagonal Circular rods in Air 7.5 2 24 / 3 3f r a , 0.12 (a=13) 
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6.  GAP MAPS 

 

The gap map which are particularly useful in engineering possibilities of photonic 

crystals, were calculated for GaAs dielectric rods in air and air holes in GaAs for all 

configurations varying the radius or the width of the rods or air holes by an iterating 

procedure using the plane wave expansion method for the first 20 bands. The gap maps 

indicate the location of the gaps for a particular GaAs lattice. For the square lattice of square 

and circular GaAs rods as well as circular air holes in GaAs, the gap maps are presented in 

figure 16 with the complete band gaps in green, TM gaps in red and TE gaps in blue.  

 
  

  
 

16(a) 

 
  

       
 

16(b) 
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16(c) 

Fig. 16. Gap map for square lattice of (a) square GaAs rods, (a) circular GaAs rods and (c) circular air 

holes in GaAs.  
 

 

TM gaps are more favoured for dielectric rods while TE gaps are more favoured for air holes. 

For square lattice of square GaAs rods for /w a ~ 0.5 0.8  and of circular air holes in GaAs 

for /r a ~ 0.42 0.50  photonic gaps were observed. In Figure 17 the gap maps for triangular 

lattices of circular and hexagonal GaAs rods in air and air holes in GaAs are presented. 

Complete band gaps were obtained for all the types of triangular lattices. For dielectric rods, 

except at higher frequencies for r/a larger than 3.5 the patterns are similar.      

 
 

  

17(a) 
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17 (d) 
 
Fig. 17. Gap maps for triangular lattice of (a) circular GaAs rods in air, (b) circular air holes in GaAs, 

(c) hexagonal GaAs rods in air, d) hexagonal air holes in GaAs. Red-TM, blue-TE and green- 

complete gap. 
 

 

The gap map for honeycomb lattices of circular and hexagonal GaAs rods in air as well 

as circular alumina rods with lower dielectric constant of 9 in air are shown in Figure 18.  

 
 

  
 

18(a)                                              
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18(b)      

 
 

 

 

 

 

 Width:w/a  
18(c)  

 
Fig. 18. Gap maps for honeycomb lattice of (a) circular GaAs rods in air, b) circular alumina 

rods ( 9)   in air and (c) hexagonal GaAs rods in air. Red-TM, blue-TE and green-complete gap. 

 

 

The gap maps of circular and hexagonal GaAs rods show a quite large difference. Both 

kinds of rods give rise to formation of complete band gaps. The circular rods give large 
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complete band gaps for higher frequencies while hexagonal rods give a complete band gap at 

low frequencies. However band diagram of hexagonal cross sectional rods are more packed at 

lower frequencies than that of circular rods. The circular alumina rods gave a smaller 

complete gap width than GaAs rods while for circular air holes in GaAs, a complete gap was 

not observed. 

 

 

7.  GEOMETRICAL GAP MAPS 

 

The lattice constant and the radius or widths of the rods were varied in a parallel 

algorithm in search of a band gap around the telecommunication wavelength λ ~1.5 μm 

region. Geometrical gap maps, appropriate for a square lattice with circular and square GaAs 

rods and air holes in GaAs are shown in Figure 19.  

The TM gap widths and the mid gaps in terms of wavelength are presented in Figure 

19(a) and (b) for circular and square GaAs rods respectively. The dots indicate that the band 

gap for corresponding physical parameters lying around λ = 1.55 μm.  

For a point inside this area, the photonic crystal has a band gap for this wavelength at 

these geometrical parameters. About 5000 iterations were done to achieve this kind of a 

diagram. According to the figures, the photonic crystal of square dielectric rods has a wider 

gap map than of circular rods for TM mode.  

The mid gap wavelength is indicated as a dot while the gap width is indicated by 

vertical lines for selected points in the map. The geometrical gap maps for TE modes of a 

square lattice with both circular and square cross sectional air holes in GaAs are shown in the 

Figure 19(c) and (d). These gap maps are narrower than the gap maps obtained for TM modes 

of GaAs rods. 
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19(d) 

 

Fig. 19. Geometrical gap map around λ = 1.55 μm for square lattice with (a) circular, (b) square GaAs 

rods in air for TM mode and gap width (left) and central values for selected points in the gap map 

(right). Gap maps of (c) circular, (d) square air hole in GaAs for TE mode. 

 

                    

The appropriate geometrical gap maps for triangular lattice with circular and hexagonal 

holes drilled in GaAs for operation around telecommunication wavelength are presented in 

Figure 20. 

 

 

20(a) 
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20(b) 
 
Fig. 20. Geometrical gap map around λ = 1.55 μm for triangular lattice with (a) circular air holes and 

(b) hexagonal air holes in a dielectric medium of   = 13.  
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Fig. 21. Geometrical gap map appropriate for operation around λ = 1.55 μm for honeycomb lattice 

with circular dielectric rods for  = 13. Gap map (left) and   gap width and central values for selected 

points in the gap map (right). 
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The appropriate geometrical gap maps for triangular lattice with circular and hexagonal 

holes drilled in GaAs for operation around telecommunication wavelength are presented in 

Figure 20. Complete gap around λ = 1.55 μm could be achieved by selecting lattice constant 

and radius within the area specified by the thick lines. About 3500 iterations were done in 

order to find a correct shape of the map. At telecommunication wavelengths they have 

complete band gaps for both polarizations. These maps give the correct geometrical 

parameters for designing applications like filters and wave guides. 

The geometrical gap map calculated for a honeycomb lattice formed from circular 

GaAs rods in air has a complete gap around λ = 1.55 μm (Figure 21). Therefore a photonic 

band gap can be obtained for honeycomb lattice of isolated dielectric rods, at high 

frequencies. This could even be tuned to operate near-infrared wavelengths. As expected, it 

showed a larger gap comparable to other lattices.  

 

 

 

8.  CONCLUSIONS 

 

The dielectric constants and filling fractions are important parameters and mode field 

distribution not only depended on geometries but greatly characterized by the cross section of 

the rods and the shape of the localized medium used. The refractive index contrast must be 

high enough to have a considerable band gap. A large TM band gap was observed for square 

lattice with circular dielectric rods with small filling fractions. But fabricating a photonic 

crystal with small rods about 100 nm of radius in air or in a medium with small dielectric 

constant is challenging. The square lattice of square dielectric rods has a complete band gap 

at high frequencies.  

The variation of TM gap to mid gap ratio with dielectric contrast revealed that square 

lattice of circular rods require a lower dielectric contrast to generate a TM band gap than 

square rods. The array of square rods gives rise to a larger TM band gap when the dielectric 

contrast is greater than 16.3. A photonic gap can be obtained for square lattice of air holes for 

both square and circular cross sections for a dielectric contrast of 18. For square lattice, 

square GaAs rods in air gave a wider photonic gap than circular air holes in GaAs. Triangular 

lattice is the only simple geometry that could give rise to a complete band gap between the 

lower bands.  

Circular and hexagonal dielectric rods needed the same minimum dielectric contrast to 

open a photonic band gap. A maximum value for the gap width to mid gap frequency ratio 

occurs for a dielectric contrast of 15. For higher dielectric constants, the circular holes yield a 

larger gap than the hexagonal holes. Circular and hexagonal air holes in GaAs gave wider gap 

maps than circular and hexagonal GaAs rods in air. Honeycomb lattice behaved differently 

compared to other lattices. A complete gap can be achieved for honeycomb lattice of circular 

and hexagonal dielectric rods. These gaps had no correlations.  

The position of the gaps and filling ratio had a significant difference between these two 

rods.  For circular dielectric rods, the photonic gaps become wider with increase dielectric 

constant but hexagonal GaAs rods gave a wider photonic gap than circular GaAs rods. Air 

holes in GaAs did not create any significant gap for both TM and TE modes. The geometrical 

gap maps of GaAs material showed that, a complete band gap can be achieved for 

honeycomb lattice of isolated dielectric rods, at high frequencies.  
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