Warianty tytułu
Języki publikacji
Abstrakty
Pneumonia is of deep concern in healthcare worldwide, being the most deadly infectious disease, especially among children. Chest radiographs are crucial for detecting it. However, certain vulnerable groups exhibit heightened susceptibility, emphasizing the critical nature of accurate diagnosis and timely intervention. This paper presents convolutional neural network (CNN) models for the detection of pneumonia from chest X-rays images. Among 20 different CNN models, we identified EfficientNet-B0 as the most accurate and efficient, boasting an impressive accuracy rate of 94.13%. Furthermore, the precision, recall, and F-score metrics for this model stand at 93.50%, 92.99%, and 93.14%, respectively. This research underscores the potential of CNNs to revolutionize pneumonia diagnosis.
Rocznik
Tom
Strony
679--699
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
autor
- School of Electronic and Control Engineering, Chang’an University, Beilin, Xi’an, Shaanxi, 710061, China
autor
- Department of Computer Science, The Islamia University of Bahawalpur, Rabia Hall Rd, Bahawalpur, 63100, Pakistan
autor
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University Karak, Methawalah, Karak, 27200, Pakistan
autor
- School of Computer Science and Technology, Zhejiang Gongshang University, 18 Xuezheng St., Hangzhou, 310018, China, uom.tariq@gmail.com
autor
- Department of Applied AI, Sungkyunkwan University, Seoul, 03063, South Korea
autor
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University Karak, Methawalah, Karak, 27200, Pakistan
autor
- Management Department, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
autor
- Department of Computer Science, Northern Border University, Arar, 91431, Saudi Arabia
autor
- Department of Computer Science, King Saud University, Riyadh, 11495, Saudi Arabia
autor
- Department of Software Engineering, University of Hafr Al Batin, Hafar Al Batin, 39524, Saudi Arabia
Bibliografia
- [1] Adedoja, A.O., Owolawi, P.A., Mapayi, T. and Tu, C. (2022). Intelligent mobile plant disease diagnostic system using NASNet-Mobile deep learning, IAENG International Journal of Computer Science 49(1): 216-231.
- [2] Akbar, W., Inam Ul Haq, M., Soomro, A., Muhammad Daudpota, S., Shariq Imran, A. and Ullah, M. (2023a). Automated report generation: A GRU based method for chest X-rays, 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, pp. 1-6.
- [3] Akbar,W., Soomro, A., Ghanghro, S.A., Ul Haq, M.I. and Ullah, M. (2023b). Performance evaluation of deep learning models for breast cancer classification, 2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T), Bahawalpur, Pakistan, pp. 1-4.
- [4] Akbar, W., Soomro, A., Ullah, M., Inam Ul Haq, M., Ullah Khan, S. and Ali Shah, T. (2023c). Performance evaluation of deep learning models for leaf disease detection: A comparative study, 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, pp. 01-05.
- [5] Albawi, S., Mohammed, T.A. and Al-Zawi, S. (2017). Understanding of a convolutional neural network, 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, pp. 1-6, DOI: 10.1109/icengtechnol.2017.8308186.
- [6] Alqudah, A.M., Qazan, S. and Masad, I.S. (2021). Artificial intelligence framework for efficient detection and classification of pneumonia using chest radiography images, Journal of Medical and Biological Engineering 41(5): 599-609.
- [7] Alquran, H., Alsleti, M., Alsharif, R., Qasmieh, I.A., Alqudah, A.M. and Harun, N.H.B. (2021). Employing texture features of chest X-ray images and machine learning in COVID-19 detection and classification, Mendel 27(1): 9-17, DOI: 10.13164/mendel.2021.1.009.
- [8] Alsharif, R., Al-Issa, Y., Alqudah, A.M., Qasmieh, I.A., Mustafa, W.A. and Alquran, H. (2021). Pneumonianet: Automated detection and classification of pediatric pneumonia using chest X-ray images and CNN approach, Electronics 10(23): 2949.
- [9] Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M. and Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, Journal of Big Data 8(53): 1-74.
- [10] Ayan, E. and Ünver, H.M. (2019). Diagnosis of pneumonia from chest X-ray images using deep learning, 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1-5.
- [11] Basha, S.S., Dubey, S.R., Pulabaigari, V. and Mukherjee, S. (2020). Impact of fully connected layers on performance of convolutional neural networks for image classification, Neurocomputing 378: 112-119.
- [12] Benaissa, A., Bahri, A., El Allaoui, A. and Bourass, Y. (2022). Character recognition using pre-trained models and performance variants based on datasets size: A survey, ITM Web of Conferences 43: 01008.
- [13] Chen, C., Han, D. and Chang, C.-C. (2024). MPCCT: Multimodal vision-language learning paradigm with context-based compact transformer, Pattern Recognition 147: 110084.
- [14] Cheng, H., Lu, T., Hao, R., Li, J. and Ai, Q. (2024). Incentive-based demand response optimization method based on federated learning with a focus on user privacy protection, Applied Energy 358: 122570.
- [15] Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L. and Haworth, A. (2021). A review of medical image data augmentation techniques for deep learning applications, Journal of Medical Imaging and Radiation Oncology 65(5): 545-563.
- [16] da Silva, L. O., dos Santos Araújo, L., Souza, V. F., de Barros Neto, R. M. and Santos, A. (2020). Comparative analysis of convolutional neural networks applied in the detection of pneumonia through X-ray images of children, Learning & Nonlinear Models 18(2): 4-15.
- [17] Eusebi, P. (2013). Diagnostic accuracy measures, Cerebrovascular Diseases 36(4): 267-272.
- [18] Foulds, L. R. (2012). Optimization Techniques: An Introduction, Springer, New York.
- [19] Frederich, J., Himawan, J. and Rizkinia, M. (2024). Skin lesion classification using EfficientNet B0 and B1 via transfer learning for computer aided diagnosis, AIP Conference Proceedings 3080(1), Article no. 110002.
- [20] Haloi, M., Rajalakshmi, K.R. and Walia, P. (2018). Towards radiologist-level accurate deep learning system for pulmonary screening, arXiv: 1807.03120.
- [21] Hara, K., Saito, D. and Shouno, H. (2015). Analysis of function of rectified linear unit used in deep learning, 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, pp. 1-8.
- [22] Heravi, E.J., Aghdam, H.H. and Puig, D. (2016). Classification of foods using spatial pyramid convolutional neural network, in À. Nebot et al. (Eds), Artificial Intelligence Research and Development, IoS Press, Amsterdam, pp. 163-168.
- [23] Hussain, A., Akbar, W., Hussain, T., Bashir, A.K., Al Dabel, M.M., Ali, F. and Yang, B. (2024). Ensuring zero trust IoT data privacy: Differential privacy in blockchain using federated learning, IEEE Transactions on Consumer Electronics PP(99): 1-1.
- [24] Iqbal, T. and Ali, H. (2018). Generative adversarial network for medical images (MI-GAN), Journal of Medical Systems 42, Article no. 231, DOI: 10.1007/s10916-018-1072-9.
- [25] Jain, R., Nagrath, P., Kataria, G., Kaushik, V.S. and Hemanth, D.J. (2020). Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning, Measurement 165: 108046.
- [26] Jeczmionek, E. and Kowalski, P.A. (2023). Choice of the-norm for high level classification features pruning in modern convolutional neural networks with local sensitivity analysis, International Journal of Applied Mathematics and Computer Science 33(4): 663-672, DOI: 10.34768/amcs-2023-0047.
- [27] Kang, L., Tang, B., Huang, J. and Li, J. (2024). 3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN, Computer Methods and Programs in Biomedicine 248: 108110.
- [28] Ke, Q., Zhang, J., Wei, W., Połap, D., Woźniak, M., Kośmider, L. and Damaševĭ (2019). A neuro-heuristic approach for recognition of lung diseases from X-ray images, Expert Systems with Applications 126: 218-232.
- [29] Kermany, D., Zhang, K. and Goldbaum, M. (2018). Labeled optical coherence tomography (OCT) and chest X-ray images for classification, Mendeley Data 2(2): 651.
- [30] Lau, M.M. and Lim, K.H. (2018). Review of adaptive activation function in deep neural network, 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, pp. 686-690.
- [31] Liang, G. and Zheng, L. (2020). A transfer learning method with deep residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine 187: 104964.
- [32] Liao, L., Guo, Z., Gao, Q.,Wang, Y., Yu, F., Zhao, Q., Maybank, S.J., Liu, Z., Li, C. and Li, L. (2023). Color image recovery using generalized matrix completion over higher-order finite dimensional algebra, Axioms 12(10): 954.
- [33] Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B. and Sánchez, C.I. (2017). A survey on deep learning in medical image analysis, Medical Image Analysis 42: 60-88.
- [34] Manickam, A., Jiang, J., Zhou, Y., Sagar, A., Soundrapandiyan, R. and Samuel, R.D.J. (2021). Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures, Measurement 184: 109953.
- [35] Marques, G., Agarwal, D. and de la Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network, Applied Soft Computing 96: 106691.
- [36] Pérez-Pérez, B.D., Garcia Vazquez, J.P. and Salomón-Torres, R. (2021). Evaluation of convolutional neural networks’ hyperparameters with transfer learning to determine sorting of ripe Medjool dates, Agriculture 11(2): 115.
- [37] Prechelt, L. (2002). Early stopping - But when?, in G.B. Orr and K.R. Müller (Eds), Neural Networks: Tricks of the Trade, Springer, Berlin/Heidelberg, pp. 55-69, DOI: 10.10007/3-540-49430-83.
- [38] Račić, L., Popović, T., Čakić, S. and Šandi, S. (2021). Pneumonia detection using deep learning based on convolutional neural network, 2021 25th International Conference on Information Technology (IT), Zabljak, Montenegro, pp. 1-4.
- [39] Rahimzadeh, M. and Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of xception and ResNet50v2, Informatics in Medicine Unlocked 19: 100360.
- [40] Rahman, T., Chowdhury, M.E., Khandakar, A., Islam, K.R., Islam, K.F., Mahbub, Z.B., Kadir, M.A. and Kashem, S. (2020). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray, Applied Sciences 10(9): 3233.
- [41] Rahmat, T., Ismail, A. and Aliman, S. (2019). Chest X-ray image classification using faster R-CNN, Malaysian Journal of Computing 4(1): 225-236.
- [42] Rajaraman, S., Candemir, S., Kim, I., Thoma, G. and Antani, S. (2018). Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs, Applied Sciences 8(10): 1715.
- [43] Rajasenbagam, T., Jeyanthi, S. and Pandian, J.A. (2021). Detection of pneumonia infection in lungs from chest X-ray images using deep convolutional neural network and content-based image retrieval techniques, Journal of Ambient Intelligence and Humanized Computing 2021, DOI: 10.10007/s12652-021-03075-2.
- [44] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M.P. and Ng, A.Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning, arXiv: 1711.05225.
- [45] Ramos, D., Franco-Pedroso, J., Lozano-Diez, A. and Gonzalez-Rodriguez, J. (2018). Deconstructing cross-entropy for probabilistic binary classifiers, Entropy 20(3): 208.
- [46] Rao, D.S., Nair, S.A.H., Rao, T.V.N. and Kumar, K.S. (2022). Classification of pneumonia from chest x-ray image using machine learning models, International Journal of Intelligent Systems and Applications in Engineering 10(1s): 399-408.
- [47] Regunath, H. and Oba, Y. (2021). Community-Acquired Pneumonia, StatPearls Publishing, Treasure Island, https://europepmc.org/article/nbk/nbk430749.
- [48] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016). You only look once: Unified, real-time object detection, IEEE Conference on Compute Vision and Pattern Recognition, Las Vegas, USA, pp. 779-788.
- [49] Ruby, U. and Yendapalli, V. (2020). Binary cross entropy with deep learning technique for image classification, International Journal of Advanced Trends in Computer Science and Engineering 9(4), DOI: 10.30534/ijatcse/2020/175942020.
- [50] Sagi, O. and Rokach, L. (2018). Ensemble learning: A survey, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4): e1249.
- [51] Sahlol, A.T., Abd Elaziz, M., Tariq Jamal, A., Damaševičius, R. and Farouk Hassan, O. (2020). A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features, Symmetry 12(7): 1146.
- [52] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 4510-4520.
- [53] Shah, A. and Shah, M. (2022). Advancement of deep learning in pneumonia/COVID-19 classification and localization: A systematic review with qualitative and quantitative analysis, Chronic Diseases and Translational Medicine 8(03): 154-171.
- [54] Sharma, S., Sharma, S. and Athaiya, A. (2017). Activation functions in neural networks, Towards Data Science 6(12): 310-316.
- [55] Shoaib, M., Sayed, N., Shah, B., Hussain, T., AlZubi, A.A., AlZubi, S.A. and Ali, F. (2023). Exploring transfer learning in chest radiographic images within the interplay between COVID-19 and diabetes, Frontiers in Public Health 11: 1297909, DOI: 10.3389/fpubh.2023.1297909.
- [56] Singh, S. and Tripathi, B. (2022). Pneumonia classification using quaternion deep learning, Multimedia Tools and Applications 81(2): 1743-1764.
- [57] Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R. and Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database, Computers & Electrical Engineering 78: 388-399.
- [58] Stephen, O., Sain, M., Maduh, U.J., Jeong, D.-U. (2019). An efficient deep learning approach to pneumonia classification in healthcare, Journal of Healthcare Engineering 2019, Article ID: 4180949, DOI: 10.1155/2019/4180949.
- [59] Sun, M., Song, Z., Jiang, X., Pan, J. and Pang, Y. (2017). Learning pooling for convolutional neural network, Neurocomputing 224: 96-104.
- [60] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler M., Howard, A. and Le, Q.V. (2019). MnasNet: Platform-aware neural architecture search for mobile, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 2820-2828.
- [61] Tian, Y. and Zhang, Y. (2022). A comprehensive survey on regularization strategies in machine learning, Information Fusion 80: 146-166.
- [62] Townsend, J.T. (1971). Theoretical analysis of an alphabetic confusion matrix, Perception & Psychophysics 9: 40-50, DOI: 10.3758/BF03213026.
- [63] Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R. and Mittal, A. (2019). Pneumonia detection using CNN based feature extraction, 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, pp. 1-7.
- [64] Venter, G. (2010). Review of optimization techniques, in R. Blockley and W. Shyy (Eds), Encyclopedia of Aerospace Engineering, DOI: 10.1002/9780470686652.eae495.
- [65] Yacouby, R. and Axman, D. (2020). Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models, Proceedings of the 1st Workshop on Evaluation and Comparison of NLP Systems, pp. 79-91, (online).
- [66] Yang, C.-P., Zhu, J.-Q., Yan, T., Su, Q.-L. and Zheng, L.-X. (2022). Auxiliary pneumonia classification algorithm based on pruning compression, Computational and Mathematical Methods in Medicine 2022, Article ID: 8415187, DOI: 101155/2022/8415187.
- [67] Zhou, T., Ye, X., Lu, H., Zheng, X., Qiu, S. and Liu, Y. (2022). Dense convolutional network and its application in medical image analysis, BioMed Research International 2022, Article ID: 2384830, DOI: 10.1155/2022/2384830.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a3236d70-fb7e-4caa-bc5f-d800251d6873