Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 7, nr 1 | 3--19
Tytuł artykułu

Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.
Wydawca

Rocznik
Strony
3--19
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
autor
  • Department of Radiology, University of Pennsylvania, Philadelphia, USA
  • Computer Engineering and Informatics Department, University of Patras, Greece
  • Center for Data Analytics and Biomedical Informatics, Temple University, USA
Bibliografia
  • [1] Duncan J. S., Ayache N., Medical image analysis: progress over two decades and the challenges ahead, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, pp. 85-106, Jan. 2000.
  • [2] Bankman I. N., Handbook of Medical Imaging; Processing and Analysis. Academic Press, 2000, ch. 3.
  • [3] Tawhai M. H., Hoffman E. A., Lin C.-L., The lung physiome: merging imaging-based measures with predictive computational models, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 1, pp. 61-72, Apr. 2009.
  • [4] Bakic P. R., Kontos D., Megalooikonomou V., Rosen M. A., Maidment A. D. A., Comparison of methods for classification of breast ductal branching patterns, in 2006 Proc. International Workshop on Digital Mammography (IWDM) 2006, LNCS vol. 4046, Springer-Verlag Berlin Heidelberg, pp. 634–641.
  • [5] Wearne S. L., Rodriguez A., Ehlenberger D. B., Rocher A. B., Henderson S. C., Hof P. R., New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales, Neurosience, vol. 136, pp. 661-680, May 2005.
  • [6] Kiralya A. P., Naidichb D. P., Novaka C. L., 2D display of a 3D tree for pulmonary embolism detection, Computer Assisted Radiology and Surgery, vol. 1821, pp. 1132-1136, May 2005.
  • [7] Koehler H., Couprie M., Bouattour S., Paulus D., Extraction and analysis of coronary-tree from single X-ray angiographies, in 2004 Proc. SPIE Conference, pp. 810-816.
  • [8] Selle D., Preim B., Schenk A., Peitgen H., Analysis of vasculature for liver surgical planning, IEEE Trans. on Medical Imaging, vol. 21, pp. 1344-1357, Nov. 2002.
  • [9] Kittler J., Hatel M., Duin R. P. W., Matas J., On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20(3), pp. 226-239, 1998.
  • [10] Sboner A., Eccher C., Blanzieri E., Bauer P., Cristofolini M., Zumiani G., A multiple classifier system for early melanoma diagnosis, Artificial Intelligence in Medicine, vol. 27(1), pp. 29-44, Jan. 2003.
  • [11] Christodoulou C. I., Pattichis C. S., Pantziaris M., Nicolaides A., Texture-based classification of atherosclerotic carotid plaques, IEEE Transactions on Medical Imaging, vol. 22(7), pp. 902-912, July 2003.
  • [12] Cheng S. Ch., Huang Y. M., A novel approach to diagnose diabetes based on the fractal characteristics of retinal images, IEEE Transactions on Information Technology in Biomedicine, vol. 7(3), pp. 163-170, Sept. 2003.
  • [13] Bakic P. R., Albert M., Maidment A. D., Classification of galactograms with ramification matrices: preliminary results, Academic Radiology, vol. 10, pp. 198–204, Feb. 2003.
  • [14] Bullitt E., Zeng D., Gerig G., Aylward S., Joshi S., Smith J. K., Lin W., Ewend M. G., Vessel tortuosity and brain malignancy: a blinded study, Academic Radiology, vol. 12, pp. 1232-1240, Oct. 2005.
  • [15] Sholl D., Dendritic organization in the neurons of the visual and motor cortices of the cat, Journal of Anatomy, vol. 87, pp. 387-406, Oct. 1953.
  • [16] Langhammer C. G., Previtera M. L., Sweet E. S., Sran S. S., Chen M., Firestein B. L., Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions, Cytometry A., vol. 77(12), pp. 1160-1168, Dec. 2010.
  • [17] Gensel J. C., Schonberg D. L., Alexander J. K., McTigue D. M., Popovich P. G., Semiautomated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia, Journal of Neuroscience Methods, vol. 190, pp. 71-79, Jun. 2010.
  • [18] Park S., Kim J., Kim K., Lee S., Intelligent measurement system of intrathoracic airways, in 2007 Proc. International Federation for Medical and Biological Engineering. (IFMBE), pp. 2544-2547.
  • [19] Kontos D., Megalooikonomou V., Javadi A., Bakic P. R., Maidment A. D., Classification of galactograms using fractal properties of the breast ductal network, in 2006 Proc. IEEE Int. Symposium on Biomedical Imaging Conference (ISBI), pp. 1324-1327.
  • [20] Mandelbrot B., Fractal Geometry of Nature. New York: W. H. Freeman, 1977.
  • [21] Megalooikonomou V., Barnathan M., Kontos D., Bakic P. R., Maidment A. D., A Representation and Classification Scheme for Tree-like Structures in Medical Images: Analyzing the Branching Pattern of Ductal Trees in X-ray Galactograms, IEEE Trans. on Medical Imaging, vol. 28, pp. 487-493, Apr. 2009.
  • [22] Polikar R., Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, vol. 6(3), pp. 21-45, Sept. 2006.
  • [23] Bauer E., Kohavi R., An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants, Journal of Machine Learning, vol. 36(1-2), pp. 105-139, July 1999.
  • [24] García-Pedrajas N., Ortiz-Boyer D., Boosting k-nearest neighbor classifier by means of input space projection, Journal Expert Systems with Applications, vol. 36(7), pp. 10570-10582, Sept. 2009.
  • [25] Kuncheva L. I., Bezdek J. C., Duin R. P. W., Decision templates for multiple classifier fusion: an experimental comparison, Pattern Recognition, vol. 34(2), pp. 299-314, Feb. 2001.
  • [26] Skoura A., Barnathan M., Megalooikonomou V., Classification of Ductal Tree Structures in Galactograms, in 2009 Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1015-1018.
  • [27] Lo W. Y., Puchalski S. M., Digital image processing, Veterinary Radiology and Ultrasound, vol. 49, pp. 42-47, Jan. 2008.
  • [28] Migliavacca F., Dubini G., Computational modeling of vascular anastomoses, Biomechanics and Modeling in Mechanobiology, vol. 3, pp. 235-250, Jun. 2005.
  • [29] M. Martinez-Escobar, Peloquin C., Juhnke B., Peddicord J., Jose S., Noon C., Foo J. L., Winer E., Development of a customizable software application for medical imaging analysis and visualization, Studies in Health Technology and Informatics, vol. 163, pp. 343-347, 2011.
  • [30] Hutton B. F., Braun M., Software for image registration: algorithms, accuracy, efficacy, Seminars in Nuclear Medicine, vol. 33, pp. 180-192, Jul. 2003.
  • [31] Van Pelt J., Uylings H. B., Verwer R. W., Pentney R. J., Woldenberg M. J., Tree asymmetry – a sensitive and practical measure for binary topological trees, Bulletin of Mathematical Biology, vol. 54(5), pp. 759-84, Sep. 1992.
  • [32] Duijnhouwer J., Remme M. W. H., Van Ooyen A., Van Pelt J., Influence of dendritic topology on firing patterns in model neurons, Neurocomputing, vol. 38-40, pp. 183-189, Jun. 2001.
  • [33] Chi Y., Yang Y., Muntz R. R., Indexing and Mining Free Trees, in 2003 Proc. IEEE International Conference on Data Mining (ICDM'03), pp. 509-529.
  • [34] Salton G., Buckley C., Term-weighting approaches in automatic text retrieval, Information Processing and Management, vol. 24, no. 5, pp. 513–523, 1988.
  • [35] Dekhtyar A., Knowledge Discovery from Data, Computer Science Department, California Polytechnic State University [Online]. Available: http://users.csc.calpoly.edu/~dekhtyar/560-Fall2009/lectures/lec09.466.ps
  • [36] Kuncheva L. I., Kounchev R. K., Zlatev R. Z., Aggregation of multiple classification decisions by fuzzy templates, In 1995 European Congress on Intelligent Technologies and Soft Computing (EUFIT'95), pp. 1470-1474, Aachen, Germany.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a2ec2140-8da3-4405-bf94-26728f643a14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.