Czasopismo
2017
|
Vol. 69, nr 1
|
29--52
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
An acoustic metamaterial consisting of a homogeneous damped plate with parallel attached resonators is presented. Theoretical analysis shows that the metamaterial plate can generate multiple resonant-type band gaps and the lower-bound frequency of each band gap coincides with the resonance frequencies of the resonators. The parallel arrangement of resonators, compared with the metamaterial plate with resonators attached in series reported by Peng et al. (2015), results in a wider second band gap with a lower edge, while the first band gap is almost the same, creating therefore an easier combination of the multiple band gaps into a wider one. It is noted that damping has a significant influence on the band gaps and the effective mass density (especially for the damping of resonators). Specifically, it can be concluded that damping cannot be neglected in practical engineering applications, damping in the material of the host plate can smooth and lower the responses in the whole frequency range, especially in the higher frequency range, and a high level of damping of resonators deactivates the effect of band gaps. Such weak/damped resonators actualise the metamaterial damping poorly, and rather tend only to contribute to the overall damping such as the damping of the host plate.
Czasopismo
Rocznik
Tom
Strony
29--52
Opis fizyczny
Bibliogr. 37 poz., rys. kolor.
Twórcy
autor
- School of Marine Science and Technology Northwestern Polytechnical University Xi’an, Shaanxi, P.R. China 710072
- College of Engineering and Computer Science the Australian National University Acton, ACT, Australia 2601
autor
- School of Marine Science and Technology Northwestern Polytechnical University Xi’an, Shaanxi, P.R. China 710072
autor
- School of Marine Science and Technology Northwestern Polytechnical University Xi’an, Shaanxi, P.R. China 710072
autor
- College of Engineering and Computer Science the Australian National University Acton, ACT, Australia 2601 , qinghua.qin@anu.edu.au
Bibliografia
- 1. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative density, Physics Letters A, 373 (48), 4464–4469, 2009.
- 2. M. Oudich, B. Djafari-Rouhani, Y. Pennec, M.B. Assouar, B. Bonello, Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars, Journal of Applied Physics, 116 (18), 184504, 2014.
- 3. T. Wang, H. Wang, M.P. Sheng, Q.H. Qin, Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions. Project supported by the China Scholarship Council, Chinese Physics B, 25 (4), 046301, 2016.
- 4. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative modulus, Journal of Physics: Condensed Matter, 21 (17), 175704, 2009.
- 5. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus, Nature Materials, 5(6), 452–456, 2006.
- 6. T. Wang, M.-P. Sheng, Z.-W. Guo, Q.H. Qin, Flexural wave suppression by an acoustic metamaterial plate, Applied Acoustics, 114, 118–124, 2016.
- 7. T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, O. Mondain-Monval, Soft 3D acoustic metamaterial with negative index, Nature Materials, 14 (4), 384–388, 2015.
- 8. H.H. Huang, C.T. Sun, G.L. Huang, On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science, 47 (4), 610–617, 2009.
- 9. G.L. Huang, C.T. Sun, Band gaps in a multiresonator acoustic metamaterial, Journal of Vibration and Acoustics, 132 (3), 031003–031003, 2010.
- 10. H.H. Huang, C.T. Sun, Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young’s modulus, Journal of the Mechanics and Physics of Solids, 59 (10), 2070–2081, 2011.
- 11. S.A. Pope, H. Laalej, S. Daley, Performance and stability analysis of active elastic metamaterials with a tunable double negative response, Smart Materials and Structures, 21 (12), 125021, 2012.
- 12. X. Wang, Dynamic behaviour of a metamaterial system with negative mass and modulus, International Journal of Solids and Structures, 51 (7–8), 1534–1541, 2014.
- 13. X.N. Liu, G.K. Hu, G.L. Huang, C.T. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters, 98 (25), 251907, 2011.
- 14. T. Wang, M.P. Sheng, Q.H. Qin, Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators, Physics Letters A, 380 (4), 525–529, 2016.
- 15. D. Yu, Y. Liu, G. Wang, H. Zhao, J. Qiu, Flexural vibration band gaps in Timoshenko beams with locally resonant structures, Journal of Applied Physics, 100 (12), 124901, 2006.
- 16. Y. Liu, D. Yu, L. Li, H. Zhao, J. Wen, X. Wen, Design guidelines for flexural wave attenuation of slender beams with local resonators, Physics Letters A, 362 (5–6), 344–347, 2007.
- 17. D. Yu, Y. Liu, G. Wang, L. Cai, J. Qiu, Low frequency torsional vibration gaps in the shaft with locally resonant structures, Physics Letters A, 348 (3–6), 410–415, 2006.
- 18. J.S. Chen, B. Sharma, C.T. Sun, Dynamic behaviour of sandwich structure containing spring-mass resonators, Composite Structures, 93 (8), 2120–2125, 2011.
- 19. J.S. Chen, C.T. Sun, Wave propagation in sandwich structures with resonators and periodic cores, Journal of Sandwich Structures and Materials, 15 (3), 359–374, 2013.
- 20. J.S. Chen, C.T. Sun, Dynamic behavior of a sandwich beam with internal resonators, Journal of Sandwich Structures and Materials, 13 (4), 391–408, 2011.
- 21. J.S. Chen, R.T.Wang,Wave propagation and power flow analysis of sandwich structures with internal absorbers, Journal of Vibration and Acoustics, 136 (4), 041003–041003, 2014.
- 22. M. Nouh, O. Aldraihem, A. Baz, Vibration characteristics of metamaterial beams with periodic local resonances, Journal of Vibration and Acoustics, 136 (6), 061012–061012, 2014.
- 23. M. Nouh, O. Aldraihem, A. Baz, Wave propagation in metamaterial plates with periodic local resonances, Journal of Sound and Vibration, 341 (0), 53–73, 2015.
- 24. V.E. Gusev, O.B. Wright, Double-negative flexural acoustic metamaterial, New Journal of Physics, 16 (12), 123053, 2014.
- 25. Y. Xiao, J. Wen, X. Wen, Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators, Journal of Physics D: Applied Physics, 45 (19), 195401, 2012.
- 26. P.F. Pai, Metamaterial-based broadband elastic wave absorber, Journal of Intelligent Material Systems and Structures, 21 (5), 517–528, 2010.
- 27. H. Sun, X. Du, P.F. Pai, Theory of metamaterial beams for broadband vibration absorption, Journal of Intelligent Material Systems and Structures, 21 (11), 1085–1101, 2010.
- 28. H. Peng, P.F. Pai, Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression, International Journal of Mechanical Sciences, 89 (0), 350–361, 2014.
- 29. Q.H. Qin, The Trefftz Finite and Boundary Element Method, WIT Press, Southampton 2000.
- 30. Q.H. Qin, Trefftz finite element method and its applications, Applied Mechanics Reviews, 58 (5), 316–337, 2005.
- 31. K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, 1975.
- 32. Q.H. Qin, Transient plate bending analysis by hybrid Trefftz element approach, Communications in Numerical Methods in Engineering, 12 (10), 609–616, 1996.
- 33. H. Peng, P.F. Pai, H. Deng, Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression, International Journal of Mechanical Sciences, 103, 104–114, 2015.
- 34. G. Dhatt, E. Lefrançois, G. Touzot, Finite Element Method, John Wiley & Sons, 2012.
- 35. Q.H. Qin, H. Wang, Matlab and C Programming for Trefftz Finite Element Methods, CRC Press, New York, 2008.
- 36. Q.H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Computer Methods in Applied Mechanics and Engineering, 122 (3–4), 379–392, 1995.
- 37. Q.H. Qin, Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach, Computational Mechanics, 31 (6), 461–468, 2003.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a2ac51b9-2538-40a6-ac93-f22369d95327