Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 3 | 106--119
Tytuł artykułu

Technologies for Environmental Safety Application of Digestate as Biofertilizer

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the paper is to determine the environmentally safe and economically feasible technology of biofertilizer production from the digestate including dewatering process. Methodological basis is based on the systematic approach to the determination of factors effected on the distribution of nutrients and pollutants between liquid and solid fractions after digestate separation. We studied modern technologies aimed at dewatering the digestate and reduction of its volume, showed their effectiveness. These technologies allow expanding the opportunities for commercialization of the digestate, increasing the cost of its transportation and application to the soil instead of complex fertilizers, using some valuable products. The results of the study showed that the ecological quality of the digestate is the highest as well as co-digested thermally pre-treated feedstock is used for solid-liquid separation in centrifuge with polymer addition as post-treatment approach to the flocculation. In order to increase efficiency of biofertilizer application the technological scheme of production process of granular fertilizers from digestate was proposed. Special feature of this scheme is in the use of phosphogypsum binder for the production of organo-mineral fertilizer that contributes phosphogypsum recycling in the waste management system.
Wydawca

Rocznik
Strony
106--119
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Department of Ecology and Environmental Protection Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine, i.ableyeva@ecolog.sumdu.edu.ua
  • Department of Ecology and Environmental Protection Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Department of Ecology and Environmental Protection Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Department of Tematic Studies – Environmental Changes, Linköping University, SE-581 83, Linköping, Sweden
  • Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, 2a, Marii Kapnist Street, 03057, Kyiv, Ukraine
  • Department of Ecology and Environmental Protection Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Department of Ecology and Environmental Protection Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine
  • Department of Tematic Studies – Environmental Changes, Linköping University, SE-581 83, Linköping, Sweden
Bibliografia
  • 1. Abubaker J., Risberg K., Pell M. 2012. Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities. Applied Energy, 99, 126–134. https://doi.org/10.1016/j.apenergy. 2012.04.050
  • 2. Akhiar A., Guilayn F., Torrijos M., Battimelli A., Shamsuddin A. H., Carrere H. 2021. Correlations between digestate composition and process conditions allow to better characterize the liquid fraction of full-scale digestates. Energies, 14 (4), 1–24. https://doi.org/10.3390/ en14040971
  • 3. Al Seadi T., Drosg B., Fuchs W., Rutz D., Janssen R. 2013. Biogas digestate quality and utilization. The Biogas Handbook. https://doi.org/10.1533/9780857097415.2.267
  • 4. Bachmann S., Uptmoor R., Eichler-Löbermann B. 2015. Phosphorus distribution and availability in untreated and mechanically separated. Scientia Agricola. 73, 1, 9-17. http://dx.doi.org/10.1590/0103-9016-2015-0069
  • 5. Bauer A., Mayr H., Hopfner-Sixt K., Amon T. 2009. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. Journal of Biotechnology, 142, 1, 156–63. https://doi.org/10.1016 / j.jbiotec.2009.01.016
  • 6. Beggio G., Peng W., Lü F., Cerasaro A., Bonato T., Pivato A. 2021. Chemically Enhanced Solid–Liquid Separation of Digestate: Suspended Solids Removal and Effects on Environmental Quality of Separated Fractions. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-021-01591-y
  • 7. Biernat K., Dziołak P. L., Samson-Bręk I. 2012. Technologie energetycznego wykorzystania odpadow. Studia Ecologiae et Bioethicae, 9 (2). https://doi.org/10.21697/seb.2011.9.2.06.
  • 8. Brussaard W., Grossman M.R. 1990. Legislation to Abate Pollution from Manure: The Dutch. Approach, 15 N.C. J. INT’L L., 85. Available at: https:// scholarship.law.unc.edu/ncilj/vol15/iss1/5
  • 9. Cao Y., Wang, J., Wu, H., Yan, S., Guo, D., Wang, G., Ma, Y. 2016. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Applied Soil Ecology, 107, 116–123. https://doi.org/10.1016/j.apsoil.2016.05.010
  • 10. Capdevielle A., Sykorova E., Biscans B., et al. 2013. Optimization of struvite precipitation in synthetic biologically treated swine wastewater-Determination of the optimal process parameters. Journal of Hazardous Materials, 244–245, 357–369. https://doi.org/10.1016/j.jhazmat. 2012.11.054.
  • 11. Chatsungnoen T., Chisti Y. 2019. Chapter 11 – Flocculation and electroflocculation for algal biomass recovery, Editor(s): Ashok Pandey, Jo-Shu Chang, Carlos Ricardo Soccol, Duu-Jong Lee, Yusuf Chisti, In Biomass, Biofuels, Biochemicals, Biofuels from Algae (Second Edition), Elsevier, 257–286. https://doi.org/10.1016/B978-0-444-64192-2.00011-1.
  • 12. Chiew Y. L., Spangberg J., Baky A. 2015. Environmental impact of recycling digested food waste as a fertilizer in agriculture – a case study. Resources, Conservation and Recycling, 95, 1–14. https://doi.org/10.1016/j.resconrec.2014.11.015.
  • 13. Chini A., Hollas C. E., Bolsan A. C., Antes F. G., Treichel H., Kunz A. 2021. Treatment of digestate from swine sludge continuous stirred tank reactor to reduce total carbon and total solids content. Environment, Development and Sustainability, 23 (8), 12326–12341. https://doi.org/ 10.1007/s10668-020-01170-6
  • 14. Du Z., Xiao Y., Qi X., Liu Y., Fan X., Li Z. 2018. Peanut-Shell Biochar and Biogas Slurry Improve Soil Properties in the North China Plain: A Four-Year Field Study. Scientific Reports. 8 (13724). https://doi.org/10.1038/s41598-018-31942-0
  • 15. Elbashier M. M. A., Shao X., Tingting C., Ali A. A. S. 2018. Effects of Anaerobic Digestate on Chinese Melon (Cucumis melo L.) Yield Components, Soil Properties, and Microbial Communities under Saline Irrigation Condition. Communications in Soil Science and Plant Analysis, 49 (19), 2446–2455. https://doi.org/10.1080/00103624.2018.1510954.
  • 16. Fernandes G. W., Kunz A., Steinmetz R. L. R., et al. 2012. Chemical phosphorus removal: A clean strategy for piggery wastewater management in Brazil. Environ Technol (United Kingdom), 33, 1677–1683. https://doi.org/10.1080/09593330.2011.642896
  • 17. Fernández-Bayo J. D., Achmon Y., Harrold D. R., McCurry D. G., Hernandez K., Dahlquist-Willard R. M., Stapleton J. J., VanderGheynst, J. S., & Simmons C. W. 2017. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy. Journal of Agricultural and Food Chemistry, 65 (17), 3434–3442. https://doi.org/ 10.1021/acs.jafc.6b04816.
  • 18. Gallipoli A., Gianico A., Crognale S., Rossetti S., Mazzeo L., Piemonte V., Masi M., Braguglia C.M. 2021. 3-routes platform for recovery of high value products, energy and bio-fertilizer from urban biowaste: The revenue project. Detritus, 15, 24–30. https://doi.org/10.31025/ 2611-4135/2021.15092.
  • 19. García-Sánchez M., Siles J. A., Cajthaml T., García-Romera I., Tlustoš P., Száková J. 2015. Effect of digestate and fly ash applications on soil functional properties and microbial communities. European Journal of Soil Biology, 71, 1–12. https://doi.org/10.1016/j.ejsobi.2015.08.004
  • 20. Geletukha, G, Zheliezna, T. 2021. Prospects for Bioenergy Development in Ukraine: Roadmap until 2050. Ecological Engineering & Environmental Technology, 22(5), 73–81. http://dx.doi.org/10.12912/27197050/139346
  • 21. Geletukha, G., Matveev, Y. 2021. Prospects of biomethane production in Ukraine. Thermophysics and Thermal Power Engineering, 43(3), 65-70. https://doi.org/https://doi.org/10.31472/ttpe.3.2021.8
  • 22. Gianico A., Braguglia C.M., Cesarini R., Mininni G., 2013. Reduced temperature hydrolysis at 134°C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load. Bioresource Technology 143, 96–103.
  • 23. Gienau T., Ehrmanntraut A., Kraume M., Rosenberger S. 2020. Influence of ozone treatment on ultrafiltration performance and nutrient flow in a membrane based nutrient recovery process from anaerobic digestate. Membranes, 10 (4). https://doi.org/10.3390/membranes10040064.
  • 24. Hanserud O. S., Lyng K. A., De Vries J. W., Øgaard A. F., Brattebø H. 2017. Redistributing phosphorus in animal manure from a livestock-intensive region to an Arable region: Exploration of environmental consequences. Sustainability (Switzerland), 9 (4), 595. https://doi.org/10.3390/ su9040595.
  • 25. Haver L.V., Nayar, S. 2017. Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications, Algal Res. 24, 167–180.
  • 26. Iocoli G. A., Zabaloy M. C., Pasdevicelli G., Gómez M. A. 2019. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, 11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444.
  • 27. Jewiarz M., Wrobel M., Frączek J., Mudryk K., Dziedzic K. 2017. Impact of Selected Properties of Raw Material on Quality Features of Granular Fertilizers Obtained from Digestates and ASH Mixtures. Agricultural Engineering, 20 (4), 207–217. https://doi.org/10.1515/agriceng-2016-0078
  • 28. Kalinichenko А., Minkova О. 2014. Biological nitrogen in the legislation of the EU. Scientific notes of Ternopil National Pedagogical University named after Volodymyr Hnatyuk Series: biology, 3 (60), 7–10.
  • 29. Koster J.R., Cardenas L.M., Bol R., Lewicka-Szczebak D., Senbayram M., Well R., Giesemann A., Dittert K. 2015. Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – An N2O isotopomer case study. Soil Biology & Biochemistry, 84, 65–74. http://dx.doi.org/10.1016/j.soilbio.2015.01.021.
  • 30. Koszel M., Lorencowicz E. 2015. Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004.
  • 31. Lanza G., Wirth S., Gessler A., Kern, J. 2015. Short-Term Response of Soil Respiration to Addition of Chars: Impact of Fermentation Post-Processing and Mineral Nitrogen. Pedosphere, 25(5), 761–769. https://doi.org/10.1016/S1002-0160(15)30057-6.
  • 32. Malovanyy M., Moroz O., Popovich V., Kopiy M., Tymchuk I., Sereda A., Krusir G., Soloviy Ch. 2021. The perspective of using the «open biological conveyor » method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16(2021), 100611. https://doi.org/10.1016/j.enmm.2021.100611.
  • 33. Mamica Ł., Mazur-Bubak M., Wróbel-Rotter R. 2022. Can Biogas Plants Become a Significant Part of the New Polish Energy Deal? Business Opportunities for Poland’s Biogas Industry. Sustainability, 14, 1614. https://doi.org/10.3390/su14031614.
  • 34. Mangwandi С., JiangTao L., Albadarin A.B., Allen S.J., Walker G.M. 2013. The variability in nutrient composition of Anaerobic Digestate granules produced from high shear granulation. Waste Management, 33 (1), 33–42. https://doi.org/10.1016/j.wasman.2012.09.005
  • 35. Martin S. L., Clarke M. L., Othman M., Ramsden S. J., West H. M. 2014. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass and Bioenergy, 79(0), 39–49. https://doi.org/10.1016/j.biombioe.2015.04.030
  • 36. Maucieri C., Nicoletto C., Caruso C., Sambo P., Borin, M. 2017. Effects of digestate solid fraction fertilisation on yield and soil carbon dioxide emission in a horticulture succession. Italian Journal of Agronomy, 12(2), 116–123. https://doi.org/10.4081/ija.2017.800
  • 37. Mazzini S., Borgonovo G., Scaglioni L., Bedussi F., D’Imporzano G., Tambone F., Adani, F. 2020. Phosphorus speciation during anaerobic digestion and subsequent solid/liquid separation. Science of the Total Environment, 734, 139284. https://doi.org/10.1016/j.scitotenv.2020.139284
  • 38. Mudryk K., Frączek J., Jewiarz M., Wrоbel M., Dziedzic K. 2016. Analysis of mechanical dewatering of digestate. Agricultural Engineering, 20 (4), 157–166. https://doi.org/10.1515/agriceng-2016-0073
  • 39. Mudryk, K., Wrobel, M., Jewiarz, M., Niemiec, M. 2018. Possibility of using chalk in production of mineral-organic fertilizers. Engineering for Rural Development, 17, 777–782. https://doi.org/10.22616/ERDev2018.17.N457
  • 40. Pantelopoulos A., Magid J., Jensen L. S., Fangueiro D. 2017. Nutrient uptake efficiency in ryegrass fertilized with dried digestate solids as affected by acidification and drying temperature. Plant and Soil, 421(1–2), 401–416. https://doi.org/10.1007/s11104-017-3463-y
  • 41. Popovic O., Gioelli F., Dinuccio E., Rollè L., Balsari P. 2017. Centrifugation of digestate: The effect of chitosan on separation efficiency. Sustainability (Switzerland), 9(12), 1–9. https://doi.org/10.3390/su9122302
  • 42. Prask H., Szlachta J., Fugol M., Kordas L., Lejman A., Tuznik F. 2018. Sustainability biogas production from ensiled plants consisting of the transformation of the digestate into a valuable organicmineral granular fertilizer, 10 (3), 585. https://doi.org/10.3390/su10030585
  • 43. Singla A., Iwasa H., Inubushi K. 2014. Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). Biology and Fertility of Soils, 50(8), 1201–1209. https://doi.org/10.1007/s00374-014-0950-7
  • 44. Tambone F., Orzi V., D’Imporzano G., Adani F. 2017. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresource Technology, 243(7), 1251–1256. https://doi.org/10.1016/j.biortech.2017.07.130
  • 45. Urbanowska, A., Kabsch-Korbutowicz, M., Aragon-Briceño, C., Wnukowski, M., Pożarlik, A., Niedzwiecki, L., Baranowski, M., Czerep, M., Seruga, P., Pawlak-Kruczek, H., Bramer, E., Brem, G. 2021. Cascade membrane system for separation of water and organics from liquid by-products of htc of the agricultural digestate—evaluation of performance. Energies, 14(16). https://doi.org/10.3390/en14164752
  • 46. Vaneeckhaute C., Meers E., Michels E., Christiaens P., Tack F. M. G. 2012. Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water, Air, and Soil Pollution, 223(4), 1593–1603. https://doi.org/10.1007/s11270-011-0967-6
  • 47. Vaneeckhaute C., Zeleke A. T., Tack F. M. G., Meers E. 2017. Comparative Evaluation of Pre-treatment Methods to Enhance Phosphorus Release from Digestate. Waste and Biomass Valorization, 8(3), 659–667. https://doi.org/10.1007/s12649-016-9647-5
  • 48. Vondra M., Masa V., Tous M., Konecna E. 2018. Vacuum evaporation of a liquid digestate from anaerobic digestion: a techno-economic assessment, Chemical Engineering Transactions, 70, 769-774. https://doi.org/10.3303/CET1870129
  • 49. Voytovych I., Malovanyy M., Zhuk V., Mukha O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of water and land development, 45 (IV–VI), 185–189. https://doi.org/ 10.24425/jwld.2020.133493
  • 50. Vu Q. D., de Neergaard A., Tran T. D., Hoang Q. Q., Ly P., Tran T. M., Jensen L. S. 2015. Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 103(3), 329–346. https://doi.org/10.1007/s10705-015-9746-x
  • 51. Yentekakis I. V., Goula G. 2017. Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-value Chemicals. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00007
  • 52. Yu Z., Zhao J., Hua Y., Li X., Chen Q., Shen G. 2021. Optimization of Granulation Process for Binder-Free Biochar-Based Fertilizer from Digestate and Its Slow-Release Performance. Sustainability, 13, 8573. https://doi.org/10.3390/su13158573
  • 53. Zheng, X., Fan, J., Xu, L., Zhou, J. 2017. Effects of combined application of biogas slurry and chemical fertilizer on soil aggregation and C/N distribution in an ultisol. PLoS ONE, 12(1), 1–16. https://doi.org/10.1371/journal.pone.0170491
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a2634a9f-40de-47c4-a384-93d11e83a6f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.