Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 46, no. 3 | 80--91
Tytuł artykułu

Interaction of selected pesticides with mineral and organic soil components

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pesticide persistence, in particular in soils, often significantly exceeding the declarations of their manufacturers is surprising. There are many publications devoted to the explanation of this phenomenon in the fi eld literature, but the diverse research methodologies used may lead to the ambiguous conclusions. On the basis of the collected literature, the attempt was made to systematize the available information on the interactions of commonly used groups of pesticides with individual soil components. The complex mechanisms of interactions between pesticides and soil based on van der Waals forces, ionic and covalent bonding, ligand exchange and charge transfer complexes formation were demonstrated. It was also proved that the nature of interactions is strictly dependent on the structure of the pesticide molecule. The conclusion of the review may contribute to the choice of plant protection products that, in addition to their effectiveness, are as little ballast for the environment as possible.
Słowa kluczowe
Wydawca

Rocznik
Strony
80--91
Opis fizyczny
Bibliogr. 87 poz., schem., tab.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences
  • Institute of Environmental Engineering, Polish Academy of Sciences
Bibliografia
  • 1. Alletto, L., Coquet, Y., Benoit, P., Heddadj, D. & Barriuso, E. (2010). Tillage management effects on pesticide fate in soils. A review, Agronommy and Sustainable Development, 30, pp. 367-400, DOI: 10.1051/agro/2009018.
  • 2. Álvarez, M., du Mortier, C. & Fernández-Cirelli, A. (2013). Behavior of insecticide chlorpyrifos on soils and sediments with different organic matter content from Provincia de Buenos Aires, República Argentina. Water Air and Soil Pollution, 224, pp. 1453-1459, DOI: 10.1007/s11270-013-1571-8.
  • 3. Azarkan, S., Pena, A., Draui, K., & Sainz-Diaz, C.I. (2016). Adsorption of two fungicides on natural clays of Marocco. Applied Clay Science, 123, pp. 37-46, DOI: 10.1016/j.clay.2015.12.036.
  • 4. Barchanska, H., Czaplicka, M. & Giemza, A. (2013). Simultaneous determination of selected insecticides and atrazine in soil by MAE-GC-ECD. Archives of Environmental Protection, 39, pp. 27-40, DOI: 10.2478/aep-2013-0003.
  • 5. Besse-Hoggan, P., Alekseeva, T., Sancelme, M., Delort, A.-M. & Forano, C. (2009). Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environmental Pollution, 157, pp. 2837-2844, DOI: 10.1016/j.envpol.2009.04.005.
  • 6. Bhandari, A., Novak, J.T. & Berry, D.F. (1996). Binding of 4-monochlorophenol to soil. Environmental Science and Technology, 30, pp. 2305-2311, DOI: 10.1021/es950691c.
  • 7. Boesten, J.J.T.I. (2016). Proposal for fi eld-based definition of soil bound pesticide residues. Science of Total Environment, 544, pp. 114-117, DOI: 10.1016/j.scitotenv.2015.11.122.
  • 8. Bonfleur, E.J., Kookana, R.S., Tornisielo, V.L. & Regitano, J.B. (2016). Organomineral Interactions and herbicide sorption in Brazilian tropical and subtropical oxisols under no-tillage. Journal of Agriculture and Food Chemistry, 64, pp. 3925-3934, DOI: 10.1021/acs.jafc.5b04616.
  • 9. Boyd, S.A., Sheng, G., Teppen, B.J. & Johnston, C.T. (2001). Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environmental Science and Technology. 35, pp. 4227-4234, DOI: 10.1021/es010663w.
  • 10. Businelli, M., Marini, M., Businelli, D. & Gigliotti, G. (2000). Transport to groundwater of six commonly used herbicides: a prediction for two Italian scenarios. Pest Management Science, 56, pp. 181-188, DOI: 10.1002/(SICI)1526-4998(200002)56:2<181::AID-PS89>3.0.CO;2-5.
  • 11. Carroll, K.M., Harkness, M.R., Bracco, A.A. & Balcarcel, R.R. (1994). Application of a permeat/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environmental Science and Technology, 28, pp. 253-258, DOI: 10.1021/es00051a011.
  • 12. Celis, R., Hermosin, C.M., Cox, L. & Cornejo, J. (1999). Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environmental Science and Technology, 33, pp 1200-1206, DOI: 10.1021/es980659t.
  • 13. Chappell, M., Laird, D., Thompson, M., Li, H., Teppen, B.J., Aggarwal, V., Johnston, C.T. & Boyd, S. (2005). Influence of smectite hydration and swelling on atrazine sorption behavior. Environmental Science and Technology, 39, pp. 3150-3156, DOI: 10.1021/es048942h.
  • 14. Chefetz, B. (2003). Sorption of phenanthrene and atrazine by plant cuticular fractions. Environmental Toxicology and Chemistry, 22, pp. 2492-2498, DOI: 10.1897/02-461.
  • 15. Chefetz, B., Bilkis, Y.I. & Polubesova, T. (2004). Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Research, 38, pp. 4383-4394, DOI: 10.1016/j.watres.2004.08.023.
  • 16. Chen, J.P., Pehkonen, S.O. & Lau, C.-C. (2004). Phorate and terbufos adsorption onto four tropical soils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240, pp. 55-61, DOI: 10.1016/j.colsurfa.2004.03.008.
  • 17. Coquet, Y. (2002). Variation of pesticide sorption isotherm in soil at the catchment scale. Pest Management Science, 58, pp. 69-78, DOI: 10.4236/ajac.2011.228125.
  • 18. Cornell, R.M. & Schwertmann, U. (2003). Iron Oxides. Structure, properties, reactions, occurrences, uses. Wiley-VCH, New York.
  • 19. Cybulak, M., Sokołowska, Z., Boguta, P. & Tomczyk, A. (2019). Influence of pH and grain size on physicochemical properties of biochar and released humic substances. Fuel, 240, pp. 334-338, DOI: 10.1016/j.fuel.2018.12.003.
  • 20. Czaplicka, M., Barchanska, H., Jaworek, K. & Kaczmarczyk, B. (2018). The interaction between atrazine and the mineral horizon of soil: a spectroscopic study. Journal of Soils and Sediments, 18, pp. 827-834, DOI: 10.1007/s11368-017-1843-9.
  • 21. Ćwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E. & Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18, pp. 2692-2702, DOI: 10.1007/s11368-018-1976-5.
  • 22. Donisa, C., Mocanu, R. & Steinnes, E. (2003). Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma, 111, pp. 75-84, DOI: 10.1016/S0016-7061(02)00254-9.
  • 23. ElArfaoui, A., Sayen, S., Paris, M., Keziou, A., Couderchet, M. & Guillon, E. (2012). Is organic matter alone sufficient to predict isoproturon sorption in calcareous soils. Science of Total Environment, 432, pp. 251-256, DOI: 10.1016/j.scitotenv.2012.05.066.
  • 24. ElGouzi, S., Mingorance, M.D., Draoui, K., Chtoun, E.H. & Peña, A. (2012). Assessment of phenylurea herbicides sorption on various Mediterranean soils affected by irrigation with wastewater. Chemosphere, 89, pp. 334-339, DOI: 10.1016/j.chemosphere.2012.04.051.
  • 25. Ertli, T., Marton, A. & Foldenyi, R. (2004). Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere, 57, pp. 771- 779, DOI: 10.1016/j.chemosphere.2004.07.009.
  • 26. Farrell, J. & Reinhard, M. (1994). Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics. Environmental Science and Technology, 28, pp. 63-72, DOI: 10.1021/es00050a010.
  • 27. Fouque-Brouard, Ch.M. & Fournier, J.M. (1996). Adsorption-desorption and leaching of phenylurea herbicides on soils. Talanta, 43, pp. 1793-1802, DOI: 10.1016/0039-9140(96)01976-5.
  • 28. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, p 385-471.
  • 29. Gao, J.P., Maguhn, J., Spitzauer, P. & Kettrup, A. (1998). Sorption of pesticides in the sediment of the teufelsweiher pond (Southern Germany). II: Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon. Water Research, 32, pp. 2089-2094, DOI: 10.1016/S0043-1354(98)00140-7.
  • 30. Gebremariam, S.Y., Beutel, M.W., Yonge, D.R., Flury, M. & Harsh, J.B. (2012). Adsorption and desorption of chlorpyrifos to soils and sediments. Reviews of Environmental Contamination and Toxicology, 215, pp. 123 -175, DOI: 10.1007/978-1-4614-1463-6_3.
  • 31. Ghafoor, A., Jarvis, N.J. & Stenstrom, J. (2013). Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pest Management Science, 69, pp. 919-929, DOI: 10.1002/ps.3453.
  • 32. Giles, C.H., Smith, D. & Huitson A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloids and Interface Science, 47, pp. 755-765).
  • 33. Gondar, D., López, R., Antelo, J., Fiol, S. & Arce, F. (2012). Adsorption of paraquat on soil organic matter: Effect of exchangeable cations and dissolved organic carbon. Journal of Hazardous Materials, 234, pp. 218-223, DOI: 10.1016/j.jhazmat.2012.07.044.
  • 34. Guo, L., Jury, W.A., Wagenet, R.J., & Flury, M. (2000). Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. Journal of Contaminant Hydrology,
  • 35. 43, pp. 45-62, DOI: 10.1016/S0169-7722(99)00097-2.
  • 36. He, Y., Liu, Z., Su, P., Shen, X., Brookes, P.C. & Xu, J. (2014). A new adsorption model to quantify the net contribution of minerals to butachlor sorption in natural soils with various degrees of organo-mineral aggregation. Geoderma, 232, pp. 309-316, DOI: 10.1016/j.geoderma.2014.05.021.
  • 37. Hong, Y.-S., Liu, Y., Chen, Y.Y., Liu, Y.-F., Yu, L., Liu, Y. & Cheng, H. (2019). Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma, 337, pp. 758-769, DOI: 10.1016/j.geoderma.2018.10.025.
  • 38. Huang, P.M., Grover, R. & McKecher, R.B. (1984). Components and particle size fractions involved in atrazine adsorption by soils. Soil Science, 138, pp. 20-24, DOI: 10.1097/00010694-198407000-00004.
  • 39. Janoš, P., Kormunda, M., Novák, F., Fuitová, J. & Pilarová, V. (2013). Multifunctional humate-based magnetic sorbent: Preparation, properties and sorption of Cu (II), phosphates and selected pesticide. Reactive and Functional Polymers, 73, pp. 46-52, DOI: 10.1016/j.reactfunctpolym.2012.09.001.
  • 40. Johnston, C., de Oliveira, M.F., Teppen, B.J., Sheng, G. & Boyd, S.A. (2001). Spectroscopic study of nitroaromatic-smectite sorption mechanisms. Environmental Science and Technology, 35, pp. 4767-4772, DOI: 10.1021/es010909x.
  • 41. Kaur S., Kumar V., Chawla M., Cavallo L., Poater A. & Upadhyay N. (2017). Pesticides curbing soil fertility: Effect of complexation of free metal ions. Frontires in Chemistry, 5, pp. 1-10, DOI: 10.3389/fchem.2017.00043.
  • 42. Kodesová, R., Kocárek, M., Kodes, V., Drábek, O., Kozáka, J. & Hejtmánková, K. (2011). Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186, pp. 540-550, DOI: 10.1016/j.jhazmat.2010.11.040.
  • 43. Kulikova, N.A. & Perminova, I.V. (2002). Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environmental Science and Technology, 36, pp. 3720-3724, DOI: 10.1021/es015778e.
  • 44. Langmuir, I. (1916), The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society 38, p. 2221.
  • 45. Li, J., Langford, C.H. & Gamble, D.S. (1996). Atrazine sorption by a mineral soil: Processes of labile and nonlabile uptake. Journal of Agricultural and Food Chemistry, 44, pp. 3672-3679, DOI: 10.1021/jf950500p.
  • 46. Li, H., Sheng, G., Teppen, B., Johnston, C. & Boyd, S.A. (2003). Sorption and desorption of pesticides by clay minerals and humic acid clay complexes. Soil Science Society of American Journal Abstract, 67, pp. 122-131, DOI: 10.2136/sssaj2003.1220.
  • 47. Li, H., Teppen, B.J., Johnston, C.T. & Boyd, S.A. (2004). Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environmental Science and Technology, 38, pp. 5433-5442, DOI: 10.1021/es035054y.
  • 48. Liu, Z., He, Y., Xu, J., Huang, P. & Jilani, G. (2008). The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Environmental Pollution, 152, pp. 63-171, DOI: 10.1016/j.envpol.2007.05.006.
  • 49. Liu, Z., He, Y., Xu, J. & Zeng, F. (2013). How do amorphous sesquioxides affect and contribute to butachlor retention in soils. Journal of Soils Sediments, 13, pp. 617-628, DOI: 10.1007/s11368-012-0638-2.
  • 50. Magga, Z., Tzovolou, D.N., Theodoropoulou, M.A. & Tsakiroglou, C.D. (2012). Combining experimental techniques with non-linear numerical models to assess the sorption of pesticides on soils. Journal of Contaminant Hydrology, 129, pp. 62-69, DOI: 10.1016/j.jconhyd.2011.09.010.
  • 51. Maqueda, C., Mouillo, E., Martin, F. & Undabeytia, T. (1993). Interaction of pesticides with the soluble fraction of natural and artificial humic substances. Journal of Environmental Science and Health part B, 28, pp, 655-670.
  • 52. Nearpass, DC. (1965). Effect of soil acidity on the adsorption penetration and persistence of simazine. Weeds, 13, pp. 341-346, DOI: 10.2307/4040892.
  • 53. Nearpass, D.C. (1976). Adsorption of picloram by humic acids and humans. Soil Science, 121, pp. 272-277.
  • 54. Parada, J., Rubilar, O., Diez, M.C., Cea, M. & Tortella, G.R. (2019). Combined pollution of copper nanoparticles and atrazine in soil: Effects on dissipation of the pesticide and on microbiological community profiles. Journal of Hazardous Materials, 361, pp. 228-236, DOI: 10.1016/j.jhazmat.2018.08.042.
  • 55. Park, J.-H., Feng, Y., Cho, S.Y., Voice, T. & Boyd, S.A. (2004). Sorbed atrazine shifts into non-11desorbable sites of soil organic matter during aging. Water Research, 38, pp. 3881-3892, DOI: 10.1016/j.watres.2004.06.026.
  • 56. Pateiro-Moure, M., Pérez-Novo, C., Arias-Estévez, M., Rial-Otero, R. & Simal-Gándar J., (2009). Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in villneyard-devoted soils. Journal of Colloid and Interface Science, 333, pp. 431-438, DOI: 10.11016/j.jcis.2009.02.019.
  • 57. Pateiro-Moure, M., Arias-Estevez, M. & Simal-Gandara, J. (2010). Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils. Journal of Hazardous Materials, 178, pp. 194-201, DOI: 10.1016/j.jhazmat.2010.01.063.
  • 58. Pignatello, J.J. (2000). The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy, 69, pp. 1-73, DOI: 10.1016/S0065-2113(08)60946-3.
  • 59. Pinheiro, M., Garniera, P., Beguet, J., Laurent, F.M. & Gonod, L.V. (2015). The millimeter-scale distribution of 2,4-D and its degraders drives the fate of 2,4-D at the soil core scale. Soil Biology and Biochemistry, 88, pp. 90-100, DOI: 10.1016/j.soilbio.2015.05.008.
  • 60. PPDB - http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/623.htm, access 2020-06-19.
  • 61. Pronk, G.J., Heister, K., Woche, S.K., Totsche, K.U. & Kogel-Knabner, I. (2013). The phenanthrene-sorptive interface of an arable topsoil and its particle size fractions. European Journal of Soil Science, 64, pp. 121 - 130, DOI: 10.1111/ejss.12007.
  • 62. Rani, R. & Juwarkar, A. (2010). Adsorption of phorate, an organophosphorus pesticide, on vertisol, Archives of Environmental Contamination and Toxicology, 58, pp. 927-934, DOI: 10.1007/s00244-009-9424-6.
  • 63. Rodríguez-Valdecantos, G., Manzano, M., Sánchez, R., Urbina, F., Hengst, M.B., Lardies, M.A., Ruz, G.A. & González, B. (2017). Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Applied Soil Ecology, 120, pp. 44-54, DOI: 10.1016/j.apsoil.2017.07.015.
  • 64. Romdhane, S., Devers, Lamrani, M., Beguet, J., Bertrand, C., Calvayrac, C., Salvia, M.-V., Jrad, A.B., Dayan, F.E. & Spor, A. (2019). Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of Total Environment, 651, pp. 241-249, DOI: 10.1016/j.scitotenv.2018.09.159.
  • 65. Roy, C., Gaillardon, P. & Montfort, F. (2000). The Effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Management Science, 56, pp. 795-803, DOI: 10.1002/1526-4998(200009)56:9<795::AID-PS193>3.0.CO;2-Y.
  • 66. Sadegh-Zadeh, F., Wahid, S.A. & Jalili, B. (2017). Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review. Advances in Environmental Technology, 2, pp. 119-132, DOI: 10.22104/AET.2017.1740.1100.
  • 67. Schwertmann, U. & Cornell, R.M. (2000). Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, New York).
  • 68. Seki Y. & Yurdakoç, K. (2005). Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287, pp. 1-5, DOI: 10.1016/j.jcis.2004.10.072.
  • 69. Senesi, N. & Testini, C. (1980). Adsorption of some nitrogenated herbicides by soil humic acid. Soil Science, 10, pp. 314-320.
  • 70. Senesi, N., Testini, C. & Miano, T.M. (1987). Interaction mechanism between humic acids of different origin and nature and electron donor herbicides: a comparative IR and ESR study. Organic Geochemistry, 11, pp. 25-30, DOI: 10.1016/0146-6380(87)90048-9.
  • 71. Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. Science of Total Environment, 123, pp. 63-76, DOI: 10.1016/0048-9697(92)90133-D.
  • 72. Senesi, N. (1993). Nature of interactions between organic chemicals and dissolvent humic substances and the influences of environmental factors. In: Beck, J., Jones, K.C. & Hayes M.H.B., USA 1993.
  • 73. Shan, R., Chen, Y., Meng, L., Li, H., Zhao, Z., Gao, M. & Sun, X. (2020). Rapid prediction of atrazine sorption in soil using visible near infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, pp. 117455, DOI: 10.1016/j.saa.2019.117455.
  • 74. Shao-nan, L., Sun, Y., Yang, T. & Huangpu, W. (2007). Relationship between mobility factors (Rf) of two hydrophobic termiticides and selected fi eld and artificial soil parameters. Science of Total Environment, 388, pp. 206-213, DOI: 10.1016/j.scitotenv.2007.08.006.
  • 75. Sidhoum, D. A., Socías-Viciana, M.M., Urena-Amate, M.D., González-Pradas, E., Debbagh-Boutarbouch, N. & Derdour, A. (2013). Removal of paraquat from water by an Algerian bentonite. Applied Clay Science, 83-84, pp. 441-448, DOI: 10.1016/j.clay.2013.07.007.
  • 76. Singh, B., Farenhorst, A., Gaultier, J., Pennock, D., Degenhardt, D. & McQueen, R. (2014). Soil characteristics and herbicide sorption coefficients in 140 soil profiles of two irregular undulating to hummocky terrain of western Canada. Geoderma, 232, pp. 107-116, DOI: 10.1016/j.geoderma.2014.05.003.
  • 77. Sun, K., Gao, B., Ro, K.S., Novak, J.M., Wang, Z., Herbert, S. & Xing, B. (2012). Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environmental Pollution, 163, pp. 167-173, DOI: 0.1016/j.envpol.2011.12.015.
  • 78. Tunega, D., Aquino, A.J.A., Haberhauer, G., Rerzabek, M.H. & Lischka, H. (2010). Hydrogen bonds and solvent Effects in soil processes: A theoretical view. In Canuto S. (ed.) Solvation Effects on Molecules and Biomolecules pp. 321-347, Springer, DOI: 10.1007/978-1-4020-8270-2_12.
  • 79. Vallée, R., Dousset, S., Billet, D. & Benoit, M. (2014). Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond. Environmental Science and Pollution Research, 7, pp. 4895-905, DOI: 10.1007/s11356-013-1840-5.
  • 80. Vasudevan, D., Cooper, E. & Exem, O.L. (2002). Sorption-desorption of ionogenic compounds at the mineral-water interface: study of metal oxide-rich soils and pure-phase minerals. Environmental Science and Technology, 36, pp. 501-511, DOI: 10.1021/es0109390.
  • 81. Villaverde, J., Kah, M. & Brown, C.D. (2008). Adsorption and degradation of four acidic herbicides in soils from southern Spain. Pest Management Science, 64, pp. 703-710, DOI: 10.1002/ps.1545.
  • 82. Villaverde, J., Van Beinum, W., Beulke, S. & Brown, C.D. (2009). The kinetics of sorption by retarded diffusion into soil aggregate pores. Environmental Science and Technology, 43, pp. 8227-8232, DOI: 10.1021/es9015052.
  • 83. Wang, X., Guo, X., Yang, Y., Tao, S. & Xing, B. (2011). Sorption mechanisms of phenanthrene, lindane, and atrazine with various HAs fractions from a single soil sample. Environmental Science and Technology, 45, pp. 2124-2130, DOI: 10.1021/es102468z.
  • 84. Weber, W.J, Huang, W. & Yu, H. (1998). Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments: 2. Effects of soil organic matter heterogeneity. Journal of Contaminant Hydrology, 31, pp. 149-165, DOI: 10.1016/S0169-7722(97)00059-4.
  • 85. Yue, L., Ge Ch., Feng, D., Huamei, Yu H., Deng, H. & Fu B. (2017). Adsorption - desorption behavior of atrazine on agricultural soils in China. Journal of Environmental Science, 57, pp. 180-189, DOI: 10.1016/j.jes.2016.11.002.
  • 86. Zhang, P., Sheng, G., Feng, Y. & Miller, D.M. (2005). Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environmental Science and Technology, 39, pp. 5442-5448, DOI: 10.1021/es0480670.
  • 87. Zhu, D. & Pignatello, J.J. (2005). Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model sorbent. Environmental Science and Technology, 39, pp. 2033-2041, DOI: 10.1021/es0491376
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a260cac4-e44d-4f06-a4fd-81b8f6555536
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.