Czasopismo
2018
|
Vol. 18, no. 2
|
645--658
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Equilibrium equations of a functionally graded plate resting on two-parameter elastic foundations are derived using hyperbolic shear deformation theory. This theory takes into account the hyperbolic distribution of transverse shear deformation and satisfies that the corresponding shear stresses equal to zero on upper and lower surfaces of the plate without requiring any shear correction factors. Eight different types of boundary conditions are considered. Governing equations are obtained including the plate-foundation interaction. The present results are compared well with the corresponding available in the literature. Effects of boundary conditions, linear (Winkler) modulus and shear foundation (Pasternak) modulus, gradient index, plate aspect ratio, side-to-thickness ratio on the stresses and deflections are all discussed. It is established that the present model is more accurate than some theories developed previously.
Czasopismo
Rocznik
Tom
Strony
645--658
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, zenkour@kau.edu.sa
- Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
autor
- Department of Mathematics and Statistics, High Institute of Management and Information Technology, Nile for Science and Technology, Kafrelsheikh 33514, Egypt
Bibliografia
- [1] H.T. Thai, T.K. Nguyen, T.P. Vo, J. Lee, Analysis of functionally graded sandwich plates using a new first-order shear deformation theory, Eur. J. Mech. A/Solids 45 (2014) 211–225.
- [2] W. Lanhe, Thermal buckling of a simply-supported moderately thick rectangular FGM plate, Compos. Struct. 64 (2004) 211–218.
- [3] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME J. Appl. Mech. 18 (1951) 31–38.
- [4] X. Zhao, Y.Y. Lee, K.M. Liew, Mechanical and thermal buckling analysis of functionally graded plates, Compos. Struct. 90 (2009) 161–171.
- [5] H. Yaghoobi, P. Yaghoobi, Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach, Meccanica 48 (2013) 2019–2035.
- [6] H. Yaghoobi, A. Fereidoon, Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory, Composites Part B 62 (2014) 54–64.
- [7] J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752.
- [8] E. Winkler, Die Lehre von der Elastizität and Festigkeit, Prag. Dominicus (1867).
- [9] U.S. Gupta, A.H. Ansari, S. Sharma, Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation, J. Sound Vibr. 297 (2006) 457–476.
- [10] K.N. Saha, R.C. Kart, P.K. Dattal, Dynamic stability of a rectangular plate on nonhomogeneous Winkler foundation, Compos. Struct. 63 (1997) 1213–1222.
- [11] A. El-Zafrany, S. Fadhil, K. Al-Hosani, A new fundamental solution for boundary element analysis of thin plates on Winkler foundation, Int. J. Numer. Methods Eng. 38 (1995) 887– 903.
- [12] P.L. Pasternak, New Calculation Method for Flexible Substructures on a Two-Parameter Elastic Foundation, Gos. Izdat. Literatury po Stroitelstvu i Arkhitekture, Moscow, 1954, pp. 1–56.
- [13] J.T. Katsikadelis, A.E. Armenakas, Plates on elastic foundation by BIE method, J. Eng. Mech. 110 (1984) 1086–1105.
- [14] G. Bezine, A new boundary element method for bending of plates on elastic foundations, Int. J. Solids Struct. 24 (1988) 557–565.
- [15] C. Girija Vallabhan, W. Thomas Straughan, Y. Das, Refined model for analysis of plates on elastic foundations, J. Eng. Mech. 117 (1991) 2830–2843.
- [16] N. Eratll, A.Y. Akoz, The mixed finite element formulation for the thick plates on elastic foundations, Compos. Struct. 65 (1997) 515–529.
- [17] H-S. Shen, Nonlinear analysis of simply supported Reissner– Mindlin plates subjected to lateral pressure and thermal loading and resting on two-parameter elastic foundations, Eng. Struct. 23 (2000) 1481–1493.
- [18] I. Chudinovich, C. Constanda, Integral representations of the solutions for a bending plate on an elastic foundation, Acta Mech. 139 (2000) 33–42.
- [19] R. Buczkowski, W. Torbacki, Finite element modeling of thick plates on two-parameter elastic foundation, Int. J. Numer. Anal. 25 (2001) 1409–1427.
- [20] K. Ozgan, A.T. Daloglu, Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model, Thin-Walled Struct. 46 (2008) 1236–1250.
- [21] A.M. Zenkour, The refined sinusoidal theory for FGM plates resting on elastic foundations, Int. J. Mech. Sci. 51 (2009) 869–880.
- [22] A.M. Zenkour, M.N.M. Allam, M.O. Shaker, A.F. Radwan, On the simple and mixed first-order theories for plates resting on elastic foundations, Acta Mech. 220 (2011) 33–46.
- [23] A.M. Zenkour, A.F. Radwan, On the simple and mixed first-order theories for functionally graded plates resting on elastic foundations, Meccanica 48 (2013) 1501–1516.
- [24] A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Bending of cross-ply laminated plates resting on elastic foundations under thermo- mechanical loading, Int. J. Mech. Mater. Des. 9 (2013) 239–251.
- [25] A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading, Int. J. Appl. Mech. 6 (2014) 1450063.
- [26] A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations, Arch. Civil Mech. Eng. 14 (2014) 144–159.
- [27] E. Carrera, S. Brischetto, A. Robaldo, Variable kinematic model for the analysis of functionally graded material plates, Am. Inst. Aeronaut. Astronaut. 46 (2008) 194–203.
- [28] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, 2004 1999.
- [29] A.M. Zenkour, Buckling and free vibration of elastic plates using simple and mixed shear deformation theories, Acta Mech. 146 (2001) 183–197.
- [30] A.M. Zenkour, A state of stress and displacement of elastic plates using simple and mixed shear deformation theories, J. Eng. Math. 44 (2002) 1–20.
- [31] J.N. Reddy, C.M. Wang, G.T. Lim, K.H. Ng, Bending solutions of Levinson beams and plates in terms of the classical theories, Int. J. Solids Struct. 38 (2001) 4701–4720.
- [32] D.W. Cooke, M. Levinson, Thick rectangular plates-II, the generalized Lévy solution, Int. J. Mech. Sci. 25 (1983) 207–215.
- [33] K.H. Lee, G.T. Lim, C.M. Wang, Thick Lévy plates re-visited, Int. J. Solids Struct. 39 (2002) 127–144.
- [34] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R.M.N. Jorge, et al., A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Composites Part B 43 (2012) 711–725.
- [35] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge, et al., Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Composites Part B 44 (2013) 657–674.
- [36] E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Effects of thickness stretching in functionally graded plates and shells, Composites Part B 42 (2011) 123–133.
- [37] H-T. Thai, D-H. Choi, Finite element formulation of various four unknown shear deformation theories for functionally graded plates, Finite Elem. Anal. Des. 75 (2013) 50–61.
- [38] J.B. Han, K.M. Liew, Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations, Int. J. Mech. Sci. 39 (1997) 977–989.
- [39] H-T. Thai, M. Park, D-H. Choi, A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation, Int. J. Mech. Sci. 73 (2013) 40–52.
- [40] H-T. Thai, T.P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Appl. Math. Modell. 37 (2013) 3269–3281.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a25ffbac-7e64-44fc-9ed0-e661d51b77fa