Warianty tytułu
Języki publikacji
Abstrakty
CrCuFeNi2Tix high-entropy alloys (HEAs) (x = 0.1 ~ 0.7) are prepared and studied in this paper to investigate the effect of titanium on the microstructure, phase composition, and mechanical properties of the CrCuFeNi2Tix-based system. Microstructural studies using scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the addition of titanium could induce the formation of a body-centered cubic lattice (BCC) and intermetallic compounds (Ni3Ti) of the CrCuFeNi2Tix-based system. The practical formation of the phases meet the theory of the atomic size difference δ, mixing enthalpy ΔHmix, mixing entropy ΔSmix, valence electron concentration (VEC), and electronegativity difference Δχ. Additionally, the tensile and hardness properties of the CrCuFeNi2Tix-based system are investigated in this study. Generally, CrCuFeNi2Tix HEAs show low stiffness and good flexibility in mechanical properties. When the x value is relatively small, the HEAs show good ductility in the tensile test, which is the result of a face-centered cubic lattice (FCC) in the phase composition at this stage; when the x value becomes larger, due to the formation of the intermetallic compounds Ni3Ti, the HEAs show high hardness.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
881--886
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wzory
Twórcy
autor
- Northwestern Polytechnical University, The School of Mechanical Engineering, Xi’an, China, chenmf767@foxmail.com
- Shenzhen University, College of Electronics and Information Engineering, Shenzhen, China
Bibliografia
- [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5), 299-303 (2004). DOI: https://doi.org/10.1002/adem.200300567
- [2] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 35 (8), 2533-2536 (2004).
- [3] C.-Y. Hsu, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear 268 (5-6), 653-659 (2010). DOI: https://doi.org/10.1016/j.wear.2009.10.013
- [4] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (1-2), 44-49 (2010). DOI: https://doi.org/10.1002/adem.200900171
- [5] R. Razuan, N.A. Jani, M.K. Harun, M.K. Talari, Microstructure and Hardness Properties Investigation of Ti and Nb Added FeNiAlCuCrTixNby High Entropy Alloys, T. Indian. I. Metals 66 (4), 309-312 (2013). DOI: https://doi.org/10.1007/s12666-013-0265-7
- [6] O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys. Compd. 509 (20), 6043-6048 (2011). DOI: https://doi.org/10.1016/j.jallcom.2011.02.171
- [7] C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, S.-K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 528 (10-11), 3581-3588 (2011). DOI: https://doi.org/10.1016/j.msea.2011.01.072
- [8] Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90 (18), 181904 (2007). DOI: https://doi.org/10.1063/1.2734517
- [9] O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (9), 4062-4074 (2012). DOI: https://doi.org/10.1007/s10853-012-6260-2
- [10] R.A. Sekhar, N. Nayan, S.R. Bakshi, Microstructure and Mechanical Properties of NiTiCuFe Multi-component Alloy, T. Indian. I. Metals 71 (11), 2789-2793 (2018). DOI: https://doi.org/10.1007/s12666-018-1444-3
- [11] R.A. Sekhar, S.R. Bakshi, Microstructure and Mechanical Properties of Ti-Al-Ni-Cr-Co-Fe-Based High-Entropy Alloys. T. Indian. I. Metals 72 (6), 1413-1416 (2019). DOI: https://doi.org/10.1007/s12666-019-01708-x
- [12] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta. Mater. 59 (16), 6308-6317 (2011). DOI: https://doi.org/10.1016/j.actamat.2011.06.041
- [13] C. Li, J. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements highentropy alloys, J. Alloys. Compd. 475 (1-2), 752-757 (2009). DOI: https://doi.org/10.1016/j.jallcom.2008.07.124
- [14] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, 2019 Elsevier.
- [15] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci. India. 85 (10), 1404-1406 (2003).
- [16] Y. Zhang, Y.J. Zhou, Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum. 561-565, 1337-1339 (2007). DOI: https://doi.org/10.4028/www.scientific.net/MSF.561-565.1337
- [17] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (6), 534-538 (2008). DOI: https://doi.org/10.1002/adem.200700240
- [18] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (10), 103505 (2011). DOI: https://doi.org/10.1063/1.3587228
- [19] S. Guo, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Prog. Nat. Sci-mater. 21 (6), 433-446 (2011). DOI: https://doi.org/10.1016/S1002-0071(12)60080-X
- [20] S. Fang, Z. Zhou, J. Zhang, M. Yao, F. Feng, D. Northwood, Two mathematical models for the hydrogen storage properties of AB2 type alloys, J. Alloys. Compd. 293-295, 10-13 (1999). DOI: https://doi.org/10.1016/S0925-8388(99)00380-1
- [21] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics 31, 165-172 (2012). DOI: https://doi.org/10.1016/j.intermet.2012.07.001
- [22] C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, C.T. Liu, Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys, J. Alloys. Compd. 584, 530-537 (2014). DOI: https://doi.org/10.1016/j.jallcom.2013.09.105
- [23] Y. Zhang, G. Chen, C. Gan, Phase Change and Mechanical Behaviors of TixCoCrFeNiCu1-yAly High Entropy Alloys, J. ASTM. Int. 7 (5), 1-8 (2010). DOI: https://doi.org/10.1520/JAI102527
- [24] C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, C. Liu, Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys, J. Alloys. Compd. 584, 530-537 (2014). DOI: https://doi.org/10.1016/j.jallcom.2013.09.105
- [25] C. Chang, Microstructure and Properties of As-Cast 10-Component Nanostructured AlCoCrCuFeMoNiTiVZr High-Entropy Alloy, PhD thesis, National Tsing Hua University, 2004.
- [26] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (12), 2817-2829 (2005). DOI: https://doi.org/10.2320/matertrans.46.2817
- [27] L. Han, Y.B. Wang, Y. Zhang, C. Lu, C.W. Fei, Y.J. Zhao, Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure, Int. J. Fatigue. 150, 106306 (2021). DOI: https://doi.org/10.1016/j.ijfatigue.2021.106306
- [28] J. Yeh, Recent progress in high-entropy alloys, Ann. Chimie. Sci. Materiaux. 31 (6), 633-648 (2006). DOI: https://doi.org/10.3166/acsm.31.633-648
- [29] C. Lu, C.W. Fei, Y.W. Feng, Y.J. Zhao, X.W. Dong, Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework, Eng. Fail. Anal. 125, 105398 (2021). DOI: https://doi.org/10.1016/j.engfailanal.2021.105398
Uwagi
I would like to thank Prof. Sanqiang Shi, Dr. Curtis Ng, and Mr. Zhengwen Nie in the Department of Mechanical Engineering, The Hong Kong Polytechnic University for their scientific help on this project. This work
was partially supported by the Fundamental Research Funds for the Central
Universities (Grant No. D5000220482) and the National Natural Science
Foundation of China (NSFC) (Grant No. 62101335).
was partially supported by the Fundamental Research Funds for the Central
Universities (Grant No. D5000220482) and the National Natural Science
Foundation of China (NSFC) (Grant No. 62101335).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a214f611-6f0b-4115-a624-a702e72614b9