Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 4 | 1295--1303
Tytuł artykułu

Wind tunnel model tests of snow precipitation and redistribution on rooftops, terraces and in the vicinity of high-rise buildings

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the model tests conducted in the Wind Engineering Laboratory of the Cracow University of Technology aimed at determining the shape coefficients of snow load on high-rise buildings of The Warsaw Hub. The shape coefficient was measured at two different situations: snow precipitation and its subsequent redistribution. The model tests were conducted independently for rooftops and terraces in the scale of 1:120 and for the neighbouring area of the buildings in the scale of 1:300. The results allowed for creation of snow shape coefficient maps on the investigated areas both for snow precipitation and redistribution for the use of designers, constructors and architects.
Wydawca

Rocznik
Strony
1295--1303
Opis fizyczny
Biblogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Structural Mechanics, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland, liwpk@windlab.pl
autor
  • Institute of Structural Mechanics, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland, gbosak@pk.edu.pl
autor
  • Institute of Structural Mechanics, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland, aleksander.pistol@gmail.com
autor
  • Wind Engineering Laboratory, Cracow University of Technology, Al. Jana Pawla II 37/3a, 31-864 Krakow, Poland, flagarch@gmail.com
Bibliografia
  • [1] N. Isyumov, M. Mikitiuk, Wind tunnel model tests of snow drifting on a two-level flat roof, J. Wind Eng. Ind. Aerodyn. 36 (1990) 893–904. , http://dx.doi.org/10.1016/0167-6105(90)90086-R.
  • [2] M. O'Rourke, A. DeGaetano, J.D. Tokarczyk, Snow drifting transport rates from water flume simulation, J. Wind Eng. Ind. Aerodyn. 92 (2004) 1245–1264. , http://dx.doi.org/10.1016/ J.JWEIA.2004.08.002.
  • [3] X. Zhou, L. Kang, X. Yuan, M. Gu, Wind tunnel test of snow redistribution on flat roofs, Cold Reg. Sci. Technol. 127 (2016) 49–56. , http://dx.doi.org/10.1016/j.coldregions.2016.04.006.
  • [4] A. Flaga, G. Kimbar, P. Matys, A new approach to wind tunnel similarity criteria for snow load prediction with an exemplary application of football stadium roof, in: 5th European and African Conference on Wind Engineering, EACWE 5, Proceedings, 2009 https://www.scimagojr.com/ journalsearch.php?q=21100198433&tip=sid&clean=0.
  • [5] G. Kimbar, A. Flaga, L. Flaga, Wind tunnel tests of snow load distribution on the roof of the New Krakow Arena,Cambridge, UK, 6th European and African Conference on Wind Engineering, EACWE 2013 https://sin.put.poznan.pl/ publications/details/i12201 , . (Accessed 14 November 2018).
  • [6] X. Zhou, J. Hu, M. Gu, Wind tunnel test of snow loads on a stepped flat roof using different granular materials, Nat. Hazards 74 (2014) 1629–1648. , http://dx.doi.org/10.1007/ s11069-014-1296-z.
  • [7] P.A. Irwin, S.L. Gamble, D.A. Taylor, Effects of roof size, heat transfer, and climate on snow loads: studies for the 1995 NBC, Can. J. Civ. Eng. 22 (1995) 770–784. , http://dx.doi.org/10.1139/ l95-087.
  • [8] M. O'Rourke, A. DeGaetano, J.D. Tokarczyk, Analytical simulation of snow drift loading, J. Struct. Eng. 131 (2005) 660– 667. , http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:4(660).
  • [9] A. Flaga, L. Flaga, Wind tunnel tests and analysis of snow load distribution on three different large size stadium roofs, Cold Reg. Sci. Technol. 160 (2019) 163–175. , http://dx.doi.org/ 10.1016/J.COLDREGIONS.2019.02.002.
  • [10] M. Mellor, Cold Regions Science and Engineering Part III, Section A3c: Blowing Snow,Cold Regions Research & Engineering LaboratoryHanover, New Hampshire http:// www.dtic.mil/docs/citations/AD0630328, (1965), . (Accessed 14 November 2018).
  • [11] A. Flaga, G. Bosak, L. Flaga, R. Klaput, A. Kocon, P. Krajewski, A. Pistol, A. Augustyn, Complex Model Studies in Wind Tunel of Sienna Towers Buildings in Warsaw, Cracow, Poland, 2017 [in Polish].
  • [12] A. Flaga, Wind Engineering. Fundamentals and Applications, Arkady, Warsaw, Poland, 2008 [in Polish].
  • [13] PN-EN 1991-1-3, Eurocode 1 – Actions on structures – Part 1-3: General actions – Snow loads, (2005); [in Polish].
  • [14] R.A. Schmidt, Properties of blowing snow, Rev. Geophys. 20 (1982) 39, http://dx.doi.org/10.1029/RG020i001p00039.
  • [15] M. Tsuchiya, T. Tomabechi, T. Hongo, H. Ueda, Wind effects on snowdrift on stepped flat roofs, J. Wind Eng. Ind. Aerodyn. 90 (2002) 1881–1892. , http://dx.doi.org/10.1016/S0167-6105(02) 00295-7.
  • [16] T. Hongo, M. Tsuchiya, T. Tomabechi, H. Ueda, Wind effects on snow drifts around two-dimensional fence, 4th International Conference of Snow Engineering, Trondheim, Norway, 2000, pp. 397–402.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1fbd0c8-50a0-4ffa-afd1-b1992d6c8a4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.