Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 49, nr 2 | 331--337
Tytuł artykułu

Critical points of hypoeutectoid steel - prediction of the pearlite dissolution finish temperature Ac1f

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this work is to present possibility of calculation of pearlite dissolution finish temperature during heating of hypoeutoctoid steels. Design/methodology/approach: The presented multiple linear regression equations for calculating the Ac1f temperature are based on experimental data set containing chemical composition and values of critical temperatures obtained by use of the dilatometric technique at the own laboratory only. Findings: The elaborated multiple linear regression equations for calculating the critical temperatures are an alternative to dilatometric examinations to obtain data necessary for proper heat treatment conditions planning. Research limitations/implications: All presented equations for calculating pearlite dissolution finish temperature are limited by range of mass concentrations of elements which is a consequence of limited data set used for elaboration of these equations. The obtained relationships do not concern other factors influencing Aclf temperature such as heating rate, grain size and interlamellar spacing of pearlite. Practical implications: Broadening the knowledge on the chemical composition influence on the critical temperatures, which will help in designing heat treatment conditions, especially of the Dual Phase steels. Originality/value: An attempt was made to find out a multiple linear regression formula between chemical composition and the pearlite dissolution finish temperature of hypoeutectoid steels.
Wydawca

Rocznik
Strony
331--337
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, bpawlow@agh.edu.p
Bibliografia
  • [1] G. Krauss, Steels: Processing, structure and performance, ASM International, Materials Park, Ohio, 2005, 16.
  • [2] F.G. Caballero, C. Capdevila, C.G. de Andrés, Modelling of kinetics of austenite formation in steels with different initial microstructures, ISIJ International 41/10 (2001) 1093-1102.
  • [3] F.G. Caballero, C. Capdevila, C.G. de Andrés, Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel, Metallurgical and Materials Transactions A 39 (2001) 1283-1291.
  • [4] H. Surm, O. Kessler, M. Hunkel, F. Hoffmann, P. Mayr, Modelling of the ferrite/carbide - austenite transformation of hypoeutectoid and hypereutectoid steels, Journal de Physique 120 (2004) 111-119.
  • [5] F.L.G. Oliveira, M.S. Andrade, A.B. Cota, Kinetics of austenite formation during continuous heating in a low carbon steel, Materials Characterization 58 (2007) 256-261.
  • [6] D. San Martín, P.E.J. Rivera-Díaz-del-Castillo, C.G. de Andrés, In situ study of austenite formation by dilatometry in a low carbon micoalloyed steel, Scripta Materialia 58 (2008) 926-929.
  • [7] F. Wever, A. Rose, Atlas zur Wärmebehandlung des Stähle, Verlag Stahleisen M.B.H., Düsseldorf (in German).
  • [8] A.A. Gorni, Steel forming and heat treatment handbook, www.gorni.eng.br/e/Gorni_SFHTHandbook.pdf.
  • [9] K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures, Journal of the Iron and Steel Institute 203 (1965) 721-727.
  • [10] H.P. Hougardy, Werkstoffkunde Stahl Band 1: Grundlagen, Verlag Stahleisen G.m.b.H. Düsseldorf, 1984, 229.
  • [11] O.G. Kasatkin, B.B. Vinokur, Calculation models for determining the critical points of steel, Metallovedenie i Termicheskaya Obrabotka Metallov 1 (1984) 20-22.
  • [12] J. Trzaska, L.A. Dobrzański, Modelling of CCT diagrams for engineering and constructional steels, Journal of Materials Processing Technology 192-193 (2007) 504-510.
  • [13] L. Gavard, H.K.D.H. Bhadeshia, D.J.C. MacKay, S. Suzuki, Bayesian neural network model for austenite formation in steels, Materials Science and Technology 12 (1996) 453-463.
  • [14] H.K.D.H. Bhadeshia, Neural networks in Materials Science, ISIJ International 39 (1999) 966-979.
  • [15] L.A. Dobrzański, J. Trzaska, Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations, Journal of Materials Processing Technology 155-156 (2004) 1950-1955.
  • [16] M. Arjomandi, S.H. Sadati, H. Khorsand, H. Abdoos, Austenite formation temperatures prediction in steels using an artificial neural network, Defect and Diffusion Forum 273-276 (2008) 335-341.
  • [17] B. Pawłowski, P. Bała, A new approach to dilatometric curve and its derivative interpretation, unpublished work.
  • [18] B. Pawłowski, P. Bała, J. Krawczyk, Some factors influencing the determination of eutectoid start and finish temperatures in hypoeutectoid steels, Metallurgy and Foundry Engineering 35/2 (2009) 121-128.
  • [19] B. Pawłowski, J. Pacyna, Phase transformation temperatures of steels, Metallurgy - Metallurgical Engineering News 77/3 (2010) 92-96 (in Polish).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1ea9338-b925-443f-8ef8-b4a89fa4e035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.