Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The work’s primary goal is to assess the influence of the cotton fibres addition and their proportion on the strength properties and thermal conductivity of foamed geopolymer composites based on fly ash. Design/methodology/approach: Fly ash from a thermal power plant was used as the foundation material to create the geopolymer composites in this study. Volcanic silica was used as an additional source of silicon. As an additive, the recycled cotton flock was used in amounts of 0.5%, 1% and 2% by weight of dry ingredients. The density, compressive, and three-point bending strength of the created geopolymers were measured. Moreover, the thermal conductivity measurements for three temperature ranges: 0–20°C, 20–40°C, and 30–50°C for all investigated geopolymers were conducted. The structure of tested materials was observed using a scanning electron microscope (SEM). Findings: It was demonstrated within the context of the study that the addition of cotton fibres to foamed fly ash-based geopolymers aids in slightly reducing their density. Cotton fibres can be used to boost the strength of the examined geopolymers; for samples with 1% cotton fibres added, compressive strength rose by around 22% and flexural strength by about 67%. Additionally, it is feasible to lower their thermal conductivity coefficient by incorporating cotton fibres into foamed fly ash-based geopolymers. Practical implications: The results obtained highlight the potential of fly ash-based geopolymer composites with the addition of cotton flocks for application as insulating materials in the building industry. Originality/value: The novelty of this work is the demonstration of the possibility of producing foamed geopolymers based on fly ash with the addition of recycled cotton fibres, with properties that make them suitable for use as building insulation materials.
Rocznik
Tom
Strony
60--70
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- Chair of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland, barbara.kozub@pk.edu.pl
autor
- Chair of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Chair of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Chair of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
- 1. X. Shi, C. Zhang, Y. Liang, J. Luo, X. Wang, Y. Feng, Y. Li, Q. Wang, A.E.-F. Abomohra, Life cycle assessment and impact correlation analysis of fly ash geopolymer concrete, Materials 14/23 (2021) 7375. DOI: https://doi.org/10.3390/ma14237375
- 2. M.A.B. Omer, T. Noguchi, A Conceptual Framework for Understanding the Contribution of Building Materials in the Achievement of Sustainable Development Goals (SDGs), Sustainable Cities and Society 52 (2020) 101869. DOI: https://doi.org/10.1016/j.scs.2019.101869
- 3. J.T. Kim, C.W.F. Yu, Sustainable development and requirements for energy efficiency in buildings - the Korean perspectives, Indoor and Built Environment 27/6 (2018) 734-751. DOI: https://doi.org/10.1177/1420326X18764618
- 4. J. Kono, Y. Ostermeyer, H. Wallbaum, Investigation of regional conditions and sustainability indicators for sustainable product development of building materials, Journal of Cleaner Production 196 (2018) 1356-1364. DOI: https://doi.org/10.1016/j.jclepro.2018.06.057
- 5. W. Chen, J. Hong, C. Xu, Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement, Journal of Cleaner Production 103 (2015) 61-69. DOI: https://doi.org/10.1016/j.jclepro.2014.04.048
- 6. Z. Cao, L. Shen, J. Zhao, L. Liu, S. Zhong, Y. Sun, Y. Yang, Toward a better practice for estimating the CO2 Emission factors of cement production: an experience from China, Journal of Cleaner Production 139 (2016) 527-539. DOI: https://doi.org/10.1016/j.jclepro.2016.08.070
- 7. EuroACE, Smart Buildings: Energy Efficiency First!, Brussels EuroACE, Belgium, 2017.
- 8. V. Kočí, R. Černý, Directly foamed geopolymers: A review of recent studies, Cement and Concrete Composites 130 (2022) 104530. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104530
- 9. D.N. Huntzinger, T.D. Eatmon, A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process with Alternative Technologies, Journal of Cleaner Production 17/7 (2009) 668-675. DOI: https://doi.org/10.1016/j.jclepro.2008.04.007
- 10. P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, Journal of Materials Science 42 (2007) 2917-2933. DOI: https://doi.org/10.1007/s10853-006-0637-z
- 11. B. Kozub, P. Bazan, D. Mierzwiński, K. Korniejenko, Fly-ash-based geopolymers reinforced by melamine fibers, Materials 14/2 (2021) 400. DOI: https://doi.org/10.3390/ma14020400
- 12. P. Bazan, B. Kozub, M. Łach, K. Korniejenko, Evaluation of hybrid melamine and steel fiber reinforced geopolymers composites, Materials 13/23 (2020) 5548. DOI: https://doi.org/10.3390/ma13235548
- 13. J. Davidovits, Geopolymer Cement a review, Geopolymer Science and Technics, Technical Paper #21, 2013, 1-11.
- 14. B. Kozub, J. Castro-Gomes, An investigation of the ground walnut shells’ addition effect on the properties of the fly ash-based geopolymer, Materials 15/11 (2022) 3936. DOI: https://doi.org/10.3390/ma15113936
- 15. J. Fort, E. Vejmelkova, D. Konakova, N. Alblova, M. Cachova, M. Keppert, P. Rovnanikova, R. Cerny, Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects, Journal of Cleaner Production 194 (2018) 714-725. DOI: https://doi.org/10.1016/j.jclepro.2018.05.181
- 16. C.L. Hwang, MD. Yehualaw, D.H. Vo, T.P. Huynh, A. Largo, Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature, Construction and Building Materials 223 (2019) 657-667. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.062
- 17. K. Korniejenko, P. Bazan, B. Figiela, B. Kozub, M. Łach, Characterization of mine tailings as raw materials for geopolymer synthesis – mineralogical composition, Proceedings of the 9th International Conference on Mechanics and Materials in Design “M2D2022”, Funchal, Portugal, 2022.
- 18. J. Mikuła, M. Łach, Geopolymers - a new environmentally friendly alternative to concrete based on Portland cement. Part 1 - Introduction, in: J. Mikuła (ed), Environmentally-friendly solutions in the field of production. Innovative and eco-friendly composite materials, Cracow University of Technology Publishing House, Kraków, 2014, 13-32 (in Polish).
- 19. J. Li, W. Zhang, C. Li, P.J.M. Monteiro, Green concrete containing diatomaceous Earth and limestone: workability, mechanical properties, and life-cycle assessment, Journal of Cleaner Production 223 (2019) 662-679. DOI: https://doi.org/10.1016/j.jclepro.2019.03.077
- 20. A.P. Gursel, H. Maryman, C. Ostertag, A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash, Journal of Cleaner Production 112/1 (2016) 823-836. DOI: https://doi.org/10.1016/j.jclepro.2015.06.029
- 21. E. Crossin, The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute, Journal of Cleaner Production 95 (2015) 101-108. DOI: https://doi.org/10.1016/j.jclepro.2015.02.082
- 22. C.K. Chau, T.M. Leung, W.Y. Ng, A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings, Applied Energy 143 (2015) 395-413. DOI: https://doi.org/10.1016/j.apenergy.2015.01.023
- 23. L.K. Turner, F.G. Collins, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Construction and Building Materials 43 (2013) 125-130. DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.023
- 24. L. Nguyen, A.J. Moseson, Y. Farnam, S. Spatari, Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders, Journal of Cleaner Production 185 (2018) 628-645. DOI: https://doi.org/10.1016/j.jclepro.2018.02.247
- 25. M. Zhang, H. Guo, T. El-Korchi, G.P. Zhang, M.J. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and Building Materials 47 (2013) 1468-1478. DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.017
- 26. M.J. Yang, S.R. Paudel, E. Asa, Comparison of pore structure in alkali activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using micro-computed tomography, Construction and Building Materials 236 (2020) 117524. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117524
- 27. A.S. Tártaro, T.M. Mata, A.A. Martins, J.C.G. Esteves da Silva, Carbon footprint of the insulation cork board, Journal of Cleaner Production 143 (2017) 925-932. DOI: https://doi.org/10.1016/j.jclepro.2016.12.028
- 28. B. Ren, Y.L. Zhao, H.Y. Bai, S.C. Kang, T.T. Zhang, S.X. Song, Eco-friendly geopolymer prepared from solid wastes: a critical review, Chemosphere 267 (2021) 128900. DOI: https://doi.org/10.1016/j.chemosphere.2020.128900
- 29. C.Y. Bai, P. Colombo, Processing, properties and applications of highly porous geopolymers: a review. Ceramics International 44/14 (2018) 16103-16118. DOI: https://doi.org/10.1016/j.ceramint.2018.05.219
- 30. D. Kioupis, A. Zisimopoulou, S. Tsivilis, G. Kakali, Development of porous geopolymers foamed by aluminum and zinc powders, Ceramics International 47/18 (2021) 26280-26292. DOI: https://doi.org/10.1016/j.ceramint.2021.06.037
- 31. K. Kaczmarski, K. Pławecka, B. Kozub, P. Bazan, M. Łach, Preliminary Investigation of Geopolymer Foams as Coating Materials, Applied Sciences 12/21 (2022) 11205. DOI: https://doi.org/10.3390/app122111205
- 32. Y. Rho, S.G. Kang, Characterization of metakaolin-based lightweight geopolymers with various foaming agents, Journal of Ceramic Processing Research 21/S1 (2020) 74-80. DOI: http://doi.org/10.36410/jcpr.2020.21..74
- 33. X.H. Liu, C.F. Hu, L.S. Chu, Microstructure, compressive strength and sound insulation property of fly ash-based geopolymeric foams with silica fume as foaming agent, Materials 13/14 (2020) 3215. DOI: https://doi.org/10.3390/ma13143215
- 34. K. Korniejenko, B. Figiela, B. Kozub, B. Azzopardi, M. Łach, Environmental degradation of foamed geopolymers, Continuum Mechanics and Thermodynamics 2022. DOI: https://doi.org/10.1007/s00161-022-01102-x
- 35. C.Y. Bai, J. Zheng, G.A. Rizzi, P. Colombo, Low-temperature fabrication of SiC/geopolymer cellular composites, Composites Part B: Engineering 137 (2018) 23-30. DOI: https://doi.org/10.1016/j.compositesb.2017.11.013
- 36. J. Fiset, M. Cellier, P.Y. Vuillaume, Macroporous geopolymers designed for facile polymers post-infusion, Cement and Concrete Composites 110 (2020) 103591. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103591
- 37. E. Haustein, A. Kuryłowicz‐Cudowska, Effect of Particle Size of Fly Ash Microspheres (FAMs) on the Selected Properties of Concrete, Minerals 12/7 (2022) 847. DOI: https://doi.org/10.3390/min12070847
- 38. A. Sarkar, S. Vishwakarma, H. Banichul, K.K. Mishra, S. Sinha Roy, A Comprehensive Analysis of the Particle Size and Shape of Fly Ash from Different Fields of ESP of a Super Thermal Power Plant, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34/5 (2012) 385-395. DOI: https://doi.org/10.1080/15567031003614649
- 39. Cotton flock: a natural for innovation. Available from: https://www.cottonworks.com/wp-content/uploads/2020/11/Cotton-Flock-Innovation.pdf (access on: 20.01.2023)
- 40. Z. Zhang, L.A. Provis, J. Reid, H. Wang, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cement and Concrete Composites 62 (2015) 97-105. DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.013
- 41. A. Hajimohammadi, T. Ngo, P. Mendis, T. Nguyen, A. Kashani, J.SJ. van Deventer, Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design, Materials and Design 130 (2017) 381-391. DOI: https://doi.org/10.1016/j.matdes.2017.05.084
- 42. J.G. Sanjayan, A. Nazari, L. Chen, G.H. Nguyen, Physical and mechanical properties of lightweight aerated geopolymer, Construction and Building Materials 79 (2015) 236-244. DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.043
- 43. Z. Zhang, H. Wang, The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus, Frontiers in Materials 3 (2016) 38-48. DOI: https://doi.org/10.3389/fmats.2016.00038
- 44. M.N. Rui, L.H. Buruberri, G. Ascensão, M.P. Seabra, J.A. Labrincha, Porous biomass fly ash-based geopolymers with tailored thermal conductivity, Journal of Cleaner Production 119 (2016) 99-107. DOI: https://doi.org/10.1016/j.jclepro.2016.01.083
- 45. K. Korniejenko, W.T. Lin, H. Šimonová, Mechanical properties of short polymer fiber-reinforced geopolymer composites, Journal of Composites Science 4/3 (2020) 128. DOI: https://doi.org/10.3390/jcs4030128
- 46. K. Korniejenko, M. Łach, M. Hebdowska-Krupa, J. Mikuła, Impact of flax fiber reinforcement on mechanical properties of solid and foamed geopolymer concrete, Advanced Technology Innovations 6/1 (2021) 11-20. DOI: https://doi.org/10.46604/aiti.2021.5294
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1b1ab79-2c92-40bd-96af-0fb486297e99