Warianty tytułu
Języki publikacji
Abstrakty
Generally in under-graduate studies, magnetizing inrush current (MIC) is discussed theoretically without giving much practical exposure. This paper presents the development of a low cost experimental set-up using a digital controller to study the MIC and the different parameters which can affect the same. This also helps to show how the inrush current can be minimized. This set-up also provides a hands-on experience of MIC and its control in under-graduate study, which can help an upcoming practitioner in industry as well as in further research. This paper presents a brief description of MIC, followed by a short analysis. Here, a pair of anti-parallel thyristors are connected in series with the primary winding of a single-phase power transformer. The turningon instant of this switch, with respect to the zero-crossing instant of the input supply voltage, may be adjusted through a firmware, in a PIC18F4620 from Microchip Technology microcontroller development board from Microchip Technology to control the transformer energisation instant. The firmware is developed in MPLABX-IDE from Microchip Technology, and the scheme is verified via simulations in Proteus simulation software. A suitable circuit to support the microcontroller development board to achieve the above function is designed and fabricated.
Czasopismo
Rocznik
Tom
Strony
292--316
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
autor
- Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India, dipankar.rs2018@ee.iiests.ac.in
autor
- Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
Bibliografia
- Al-Khalifah, A. K. and El Saadany, E. F. (2006). Investigation of magnetizing inrush current in a single-phase transformer. In: Proceedings of the IEEE Large Engineering Systems Conference on Power Engineering, 26-28 July, 2006, Halifax, NS, Canada, pp. 165–171.
- Avinash, L. R. (2015). Repression of Transformer Inrush Current. In: IJCA Proceedings of National Conference on Power Systems and Industrial Automation, NCPSIA 2015(2), 27-30 December, 2015, pp. 4–6.
- Basu, K. P. and Asghar, A. (2008). Reduction of magnetising inrush current in a delta- connected transformer. In: Proceedings of the IEEE 2nd International Power and Energy Conference, 1-3 December, 2008, Johor Bahru, Malaysia, pp. 35–38. 314
- Batista, Y. N., Souza, H. E. P. D., Neves, F. D. A. D. S., and Filho, R. F. D. (2018). A GDSC-based Technique to Distinguish Transformer Magnetising from Fault Currents. IEEE Transactions on Power Delivery, 33(2), pp. 110–118. doi: 10.1109/TPWRD.2017.2691670.
- Bi, D. Q., Zhang, X. A., Yang, H. H., Yu, G. W., Wang, X. H., and Wang, W. J. (2007). Correlation Analysis of Waveforms in Non-saturation Zone-based Method to Identify the Magnetizing Inrush in Transformer. IEEE Transactions on Power Delivery, 22(3), pp. 1380–1385. doi: 10.1109/TPWRD.2007.900147.
- Bimbhra, P. S. (2007). Generalised Theory of Electrical Machines, 5th ed. India: Khanna Publishers, pp. 967–980.
- Blume, L. F., Camilli, G., Farnham, S. B., and Peterson, H. A. (1944). Transformer Magnetizing Inrush Currents and Influence on System Operation. Transactions of the American Institute of Electrical Engineers (AIEE), 63(6), pp. 366–375. doi: 10.1109/T-AIEE.1944.5058946.
- Chen, Z., Li, H., Dong, X., He, Y., Zhou, Q., Zhang, Y., and Zhang, Y. (2023). Magnetizing Inrush Current Elimination Strategy Based on a Parallel-type Asynchronous Closing Hybrid Transformer. IEEE Transactions on Power Electronics, 38(1), pp. 931943. doi: 10.1109/TPEL.2022.3196229.
- Duan, P., Yang, Z., He, Y., Zhang, B., Zhang, L., Liu, F., and Shi, Y. (2022). Research on Identification of Magnetizing Inrush Current Based on PSOSVM. In: Proceedings of the 4th Asia Energy and Electrical Engineering Symposium, 25-28 March, 2022, Chengdu, China, pp. 630–634.
- Faiz, J. and Lotfi-Fard, S. (2006). A Novel Waveletbased Algorithm for Discrimination of Internal Faults from Magnetizing Inrush Currents in Power Transformers. IEEE Transactions on Power Delivery, 22(3), pp. 1989–1996. doi: 10.1109/TPWRD.2006.877095.
- Farazmand, A., León, F. D., Zhang, K., and Jazebi, S. (2014). Analysis, Modeling, and Simulation of the Phase-Hop Condition in Transformers: The Largest Inrush Currents. IEEE Transactions on Power Delivery, 29(4), pp. 1918–1926. doi: 10.1109/TPWRD.2013.2286828.
- Hamilton, R. (2013). Analysis of Transformer Inrush Current and Comparison of Harmonic Restraint Methods in Transformer Protection. IEEE Transactions on Industry Applications, 49(4), pp. 1890–1899. doi: 10.1109/TIA.2013.2257155.
- He, B., Zhang, X., and Bo, Z. Q. (2006). A New Method to Identify Inrush Current Based on Error Estimation. IEEE Transactions on Power Delivery, 21(3), pp. 1163–1168. doi: 10.1109/TPWRD.2005.861337.
- Hooshyar, A., Sanaye-Pasand, M., Afsharnia, S., Davarpanah, M., and Ebrahimi, B. M. (2012). TimeDomain Analysis of Differential Power Signal to Detect Magnetizing Inrush in Power Transformers. IEEE Transactions on Power Delivery, 27(3), pp. 1394–1404. doi: 10.1109/TPWRD.2012.2197869.
- Jamali, M., Mirzaie, M., and Gholamian, S. (2011). Calculation and Analysis of Transformer Inrush Current Based on Parameters of Transformer and Operating Conditions. Electronics and Electrical Engineering, 109, pp. 1392–1215. doi: 10.5755/j01.eee.109.3.162.
- Jazebi, S., León, F. D., and Wu, N. (2015). Enhanced Analytical Method for the Calculation of the Maximum Inrush Currents of Single-Phase Power Transformers. IEEE Transactions on Power Delivery, 30(6), pp. 2590–2599. doi: 10.1109/TPWRD.2015.2443560.
- Jin, N., Xing, J., Lin, X., Zhang, P., Rong, Z., Tong, Z., and Li, Z. (2020). Countermeasure on Preventing Line Zero-Sequence Overcurrent Protection from Mal-Operation due to Magnetizing Inrush. IEEE Transactions on Power Delivery, 35(3), pp. 14761487. doi: 10.1109/TPWRD.2019.2946641.
- Kumar. P. and Reddy. S. Y. (2014). Optimisation of Inrush Current in Electrical Transformer. In: Proceedings of the International Conference on Smart Electric Grid (ISEG), 19-20 September, 2014, Guntur, India, pp. 1–5.
- León, F. D., Farazmand, A., and Joseph, P. (2012). Comparing the T and Equivalent Circuits for the Calculation of Transformer Inrush Currents. IEEE Transactions on Power Delivery, 27(4), pp. 23902398. doi: 10.1109/TPWRD.2012.2208229.
- Liu, Z., Xiao, S. and Dong, S. (2021). Identification of Transformer Magnetizing Inrush Current Based on Empirical Mode Decomposition, In: Proceedings of the IEEE 4th Electrical and Energy Conference (CIEEC), 28-30 May,2021, Wuhan, China, pp. 1–6.
- Medeiros, R. P. and Costa, F. B. (2018). A Waveletbased Transformer Differential Protection: Internal Fault Detection during Inrush Conditions. IEEE Transactions on Power Delivery, 33(6), pp. 29652977. doi: 10.1109/TPWRD.2018.2852485.
- Mirkalaei, S. A. M. and Hashiesh, F. (2015). Controlled Switching to Mitigate Power Transformers Inrush Current Phenomenon. In: Proceedings of the 50th International Universities Power Engineering Conference (UPEC), 1-4 September, 2015, Stoke on Trent, UK, pp. 1–4.
- Mohan, N., Undeland, T., and Robbins, W. (2003). Power Electronics: Converters, Applications, and Design. John Wiley & Sons, Sahibabad, India
- Moreira, R. F. P., Cleff, V. M., Souza, E. G., and Nascimento, C. D. D. (2021). Gradient-based algorithm for the Distinction of Fault and Inrush Currents in Low Power Transformers. In: Proceedings of the IEEE URUCON. 24-26 November, 2021, Montevideo, Uruguay, pp. 467471.
- Naseri, F., Kazemi, Z., Arefi, M. M. and Farjah, E. (2018). Countermeasure on Preventing Line Zero-Sequence Overcurrent Protection from Mal-Operation due to Magnetizing Inrush. IEEE Transactions on Power Delivery, 33(1), pp. 110118. doi: 10.1109/TPWRD.2017.2695568.
- Negara, Y., Darmawan, D. W., Nurdianto, R., Riawan, D. C., and Musthofa, A. (2017). Demagnetization Method for Reducing Inrush Current of Single Phase 1kVA Transformer. Journal on Advance Research in Electrical Engineering (JAREE). April 2017, Volume 1, Number 1, pp. 55–61.
- Pachore, P., Gupta, Y., Anand, S., Sarkar, S., Mathur, P., and Singh, P. K. (2021). Flux Error Function- based Controlled Switching Method for Minimizing Inrush Current in 3-Phase Transformer. IEEE Transactions on Power Delivery, 36(2), pp. 870879. doi: 10.1109/TPWRD.2020.2995519.
- Sobrinho, A. M., Camacho, J. R., Malagoli, J. A., and Mamede, A. C. F. (2016). Analysis of the Maximum Inrush Current in the Optimal Design of a Single Phase Transformer. IEEE Latin America Transactions, 14(12), pp. 4706–4714. doi: 10.1109/TLA.2016.7817001.
- Taylor, D. I., Law, J. D., Johnson, B. K. and Fischer, N. (2012). Single-Phase Transformer Inrush Current Reduction using Prefluxing. IEEE Transactions on 316 Power Delivery, 27(1), pp. 245–252. doi: 10.1109/TPWRD.2011.2174162.
- Wang, E., Bai, J. and Liu, H. (2023). Research On Magnetizing Inrush Current and Fault Identification of Transformer Based on Wavelet Analysis. In: Proceedings of the IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 11-13 October, 2023, Dali, China, pp. 1010–1013.
- Wani, M., Kurundkar, K. and Bhawalkar, M. P. (2012). Use of Power Electronic Converters to Suppress Transformer Inrush Current. In: Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16-19 December, 2012, Bengaluru, India, pp. 1–5.
- Yahiou, A., Adi, A. B., Mellah, H., Abid, M., R’Gueyeg, M. S. and Merabet, A. O. (2022). Inrush Current Influence on the Hysteresis Loop of a SinglePhase Transformer. In: Proceedings of the 19th International Multi- Conference on Systems, Signals & Devices (SSD), 6-10 May, 2022, Sétif, Algeria, pp. 18171–18179.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1afc4ed-82cf-410e-9c86-fada6bfccbcb