Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in p-uniformly convex metric spaces, and prove both Delta-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete p-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.
Czasopismo
Rocznik
Tom
Strony
221--229
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Department of Mathematics, University of Swaziland, Kwaluseni, Swaziland, gcugwunnadi@uniswa.sz
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, izuchukwuc@ukzn.ac.za
- DST-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Johannesburg, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, mewomoo@ukzn.ac.za
Bibliografia
- [1] K. O. Aremu, C. Izuchukwu, G. C. Ugwunnadi and O. T. Mewomo, On the proximal point algorithm and demimetric mappings in CAT(0) spaces, Demonstr. Math. 51 (2018), no. 1, 277-294.
- [2] D. Ariza-Ruiz, G. López-Acedo and A. Nicolae, The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl. 167 (2015), no. 2, 409-429.
- [3] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463-482.
- [4] M. Bethke, Approximation von Fixpunkten streng pseudokontraktiver Operatoren, Wiss. Z. Pädagog. Hochsch. “Liselotte Herrmann” Güstrow Math.-Natur. Fak. 27 (1989), no. 2, 263-270.
- [5] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999.
- [6] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- [7] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
- [8] W. L. Bynum, Weak parallelogram laws for Banach spaces, Canad. Math. Bull. 19 (1976), no. 3, 269-275.
- [9] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283-288.
- [10] C. E. Chidume and M. O. Osilike, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. Optim. 15 (1994), no. 7-8, 779-790.
- [11] B. J. Choi and U. C. Ji, The proximal point algorithm in uniformly convex metric spaces, Commun. Korean Math. Soc. 31 (2016), no. 4, 845-855.
- [12] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762-772.
- [13] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579.
- [14] R. Espínola, A. Fernández-León and B. Pia¸ tek, Fixed points of single- and set-valued mappings in uniformly convex metric spaces with no metric convexity, Fixed Point Theory Appl. 2010 (2010), Article ID 169837.
- [15] Q. Fan and X. Wang, An explicit iterative algorithm for k-strictly pseudo-contractive mappings in Banach spaces, J. Nonlinear Sci. Appl. 9 (2016), no. 7, 5021-5028.
- [16] L. Gajek, J. Jachymski and D. Zagrodny, Fixed point and approximate fixed point theorems for non-affine maps, J. Appl. Anal. 1 (1995), no. 2, 205-211.
- [17] J.-C. Huang and T. Hu, Strong convergence theorems of an implicit iteration process for generalized hemi-contractive mappings, Tamsui Oxf. J. Math. Sci. 23 (2007), no. 3, 365-376.
- [18] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- [19] C. Izuchukwu, K. O. Aremu, A. A. Mebawondu and O. T. Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol. 20 (2019), no. 1, 193-210.
- [20] S. H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), no. 1, 109-116.
- [21] K. S. Kim, Some convergence theorems for contractive type mappings in CAT(0) spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 381715.
- [22] W. A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville 2002/2003), Colecc. Abierta 64, Universidad de Sevilla, Seville (2003), 195-225.
- [23] W. A. Kirk, Geodesic geometry and fixed point theory. II, in: International Conference on Fixed Point Theory and Applications, Yokohama Publishers, Yokohama (2004), 113-142.
- [24] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696.
- [25] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1359-1378.
- [26] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
- [27] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546-1572.
- [28] S.-I. Ohta, Regularity of harmonic functions in Cheeger-type Sobolev spaces, Ann. Global Anal. Geom. 26 (2004), no. 4, 397-410.
- [29] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125 (2007), 225-250.
- [30] S.-I. Ohta, Markov type of Alexandrov spaces of non-negative curvature, Mathematika 55 (2009), no. 1-2, 177-189.
- [31] S.-I. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), no. 3, 669-699.
- [32] Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
- [33] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77.
- [34] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat. 69 (2020), no. 1, 235-259.
- [35] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Parallel hybrid algorithm for solving Pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1893-1918.
- [36] W. Takahashi, A convexity in metric space and nonexpansive mappings. I, Kodai Math. Sem. Rep. 22 (1970), 142-149.
- [37] G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat. 30 (2019), no. 1-2, 151-169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1aec1d4-dbba-48bf-ab31-a77e0203ba20