Warianty tytułu
Języki publikacji
Abstrakty
Understanding the long-term spatiotemporal variability of precipitation at the regional scale is critical for developing flood and drought control strategies and water resource management. This study assessed the spatiotemporal variability of monthly precipitation over the Khyber Pakhtunkhwa province of Pakistan for 1998-2019 using hierarchical cluster analysis to cluster 156 Tropical Rainfall Measuring Mission grids. Statistical properties of clusters were calculated and the relationship of geographical features such as latitude, longitude, and altitude and statistical variables including standard deviation, maximum and minimum precipitation, and coefficient of variation (CV) with average precipitation was assessed. Findings showed that northeast parts received maximum precipitation while north and southern regions received less precipitation. Temporal analysis showed two clusters of rainy months (February, March, April, May, July, and August) and dry months (January, June, September, October, November, and December). The region was divided into two homogeneous precipitation regions. From January to April and November to December, cluster 1 occupied northern parts with maximum average precipitation while cluster 2 southern parts. From June to September, cluster 2 covered the northeast and southern parts with the highest average precipitation. During May, cluster 2 received the highest average precipitation in the northeast and southeast parts, whereas cluster 1 covered the northwest and southwest. In October, cluster 2 received maximum average precipitation covering the northeast. CV suggested higher temporal variability in cluster 2 (67.75-102.36)% than cluster 1 (65.82-99.55)%. Precipitation correlation showed that CV opposed the longitude and averages, whereas latitude and altitude demonstrated minimal correlations. These insights can assist decision-makers in devising suitable strategies to plan and control unexpected volumes of precipitation.
Czasopismo
Rocznik
Tom
Strony
1159--1174
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
- Department of Climatology, University of Tabriz, Tabriz, East Azerbaijan 51664, Iran, sapnatajbar@gmail.com
autor
- Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
autor
- Department of Climatology, University of Tabriz, Tabriz, East Azerbaijan 51664, Iran
- Department of Climatology, University of Tabriz, Tabriz, East Azerbaijan 51664, Iran
autor
- Department of Geoinformatics, University of Salzburg, Salzburg, Austria
Bibliografia
- 1. Aamir E, Khan A, Tariq MA (2022) The influence of teleconnections on the precipitation in Baluchistan. Atmosphere. https://doi.org/ 10.3390/atmos13071001
- 2. Ahmad NH, Othman IR, Deni SM (2013) Hierarchical cluster approach for regionalization of peninsular Malaysia based on the precipitation amount. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/ 423/1/012018
- 3. Ahmad D (2012) Khyber Pakhtunkhwa state of the environment. Peshawar: environmental protection agency, government of Khyber Pakhtunkhwa
- 4. Alam MS, Paul S (2019) A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. J Appl Stat 47(8):1460-1481. https://doi.org/10. 1080/02664763.2019.1675606
- 5. Alam F, Salam M, Khalil NA, Khan O, Khan M (2021) Rainfall trend analysis and weather forecast accuracy in selected parts of Khyber Pakhtunkhwa. Pakistan SN Appl Sci 3:575. https://doi.org/10. 1007/s42452-021-04457-z
- 6. Ali A, Khan TA, Ahmad S (2018) Analysis of climate data of Khyber Pakhtunkhwa. Pakistan Int Res J Engin Technol 5(5):4266-4282
- 7. Altaf M (2011) Determination of heat index of Federal and Provincial Capitals of Pakistan. SSRN Electron J. https://doi.org/10.2139/ ssrn.1973519
- 8. Anjum MN, Ding Y, Shangguan D, Ahmad I, Ijaz MW, Farid HU, Yagoub YE, Zaman M, Adnan M (2018) Performance evaluation of latest integrated multi-satellite retrievals for global precipitation measurement (IMERG) over the northern highlands of Pakistan. Atmos Res 205:134-146. https://doi.Org/10.1016/j.atmosres. 2018.02.010
- 9. Arroyo Á, Herrero Á, Tricio V, Corchado E (2016) Analysis of meteorological conditions in Spain by means of clustering techniques. J Appl Logic 24(B):76-89. https://doi.org/10.1016/j.jal.2016.11. 026
- 10. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Statist 3(1):1-27
- 11. Chen ZY, Cai J, Gao BB, Xu B, Dai S, He B, Xie XM (2017) Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region. Sci Rep. https://doi.org/10.1038/srep40735
- 12. Corporal-Lodangco IL, Leslie LM (2017) Defining Philippine climate zones using surface and high-resolution satellite data. Proc Comp Sci 114:324-332
- 13. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pat Analy Machi Intellig 1(2):224-227
- 14. Everitt BS, Dunn G (1991) Applied Multivariate Analysis. Edward Arnold, London
- 15. Griffith DA, Amrhein CG (1997) Multivariate statistics for geographers. Prentice-Hall, New Jersey
- 16. Guo N, Zhou Y, Yang L (2021) Statistical analysis of Central Asian vortices and their influence on precipitation in Xinjiang. Atmosp Res. https://doi.org/10.1016/j.atmosres.2020.105327
- 17. Han Z, Huang Q, Huang S, Leng G, Bai Q, Liang H, Wang L, Zhao J, Fang W (2021) Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: characteristics and potential influencing factors. Agric Water Manag. https://doi. org/10.1016/j.agwat.2020.106540
- 18. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning, data mining, inference, and prediction, 2nd edn. Springer Verlog
- 19. Huffman GJ, Bovin DT (2017) TRMM and other data precipitation data set documentation. Global Change Master Directory; NASA: Washington
- 20. Imran A, Zaman Q, Rasul G, Mahmood A (2014) An analytical study of variations in the Monsoon patterns over Pakistan. Pak J Mete-orol 10(20):25-37
- 21. Iqbal MF, Athar H (2018) Validation of satellite based precipitation over diverse topography of Pakistan. Atmosp Res 201:247-260
- 22. Jan F, Schüler L, Behling H (2016) Vegetation and pollen along a 200-km transect in Khyber Pakhtunkhwa Province, northwestern Pakistan. Palynol 40(3):322-342. https://doi.org/10.1080/01916 122.2015.1052154
- 23. Jiang Q, Li W, Fan Z, He X, Sun W, Chen S, Wen J, Gao J, Wang J (2020) Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J Hydrol. https://doi.org/10.1016/j.jhydr ol.2020.125660
- 24. Jin H, Chen X, Wu P, Song C, Xia W (2021) Evaluation of spatial-temporal distribution of precipitation in mainland China by statistic and clustering methods. Atmosp Res. https://doi.org/10.1016/j. atmosres.2021.105772
- 25. Kuswanto H, Setiawan D, Sopaheluwakan A (2019) Clustering of precipitation pattern in Indonesia using TRMM Satellite Data. Eng Technol Appl Sci Res 9(4):4484-4489. https://doi.org/10.48084/ etasr.2950
- 26. Lamirel J-C, Dugué N, Cuxac P (2016) New efficient clustering quality indexes. In: International joint conference on neural networks (IJCNN 2016), Vancouver
- 27. Liang S, Wang J (2020) Precipitation, advanced remote sensing, 2nd edn. Academic Press, USA, pp 621-647. https://doi.org/10.1016/ B978-0-12-815826-5.00016-7
- 28. Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, Sydney
- 29. Machiwal D, Kumar S, Meena HM, Santra P, Singh RK, Singh DV (2019) Clustering of rainfall stations and distinguishing influential factors using PCA and HCA techniques over the western dry region of India. Meteorol Appl 26(2):300-311
- 30. Mohapatra G, Rakesh V, Purwar S, Dimri AP (2021) Spatio-temporal rainfall variability over different meteorological subdivisions in India: analysis using different machine learning techniques. Theor Appl Climatol 145:673-686. https://doi. org/10.1007/ s00704-021-03644-7
- 31. Nadeem MU, Ghanim AAJ, Anjum MN, Shangguan D, Rasool G, Irfan M, Niazi UM, Hassan S (2022) Multiscale ground validation of satellite and reanalysis precipitation products over diverse climatic and topographic conditions. Rem Sens 14(18):4680. https://doi. org/10.3390/rs14184680
- 32. Nusrat A, Gabriel HF, Haider S, Ahmad S, Shahid M, Jamal SA (2020) Application of machine learning techniques to delineate homogeneous climate zones in river basins of Pakistan for hydro-climatic change impact studies. Appl Sci 10(19):6878. https://doi.org/10. 3390/app10196878
- 33. Ohba M, Sugimoto S (2022) Dynamic and thermodynamic contributions of ENSO to winter precipitation in Japan: frequency and precipitation of synoptic weather patterns. Clim Dyn 59:1489-1504. https://doi.org/10.1007/s00382-021-06052-9
- 34. Patel VR, Mehta RG (2011) Performance analysis of MK-means clustering algorithm with normalization approach, In: 2011 world congress on information and communication technologies, Mumbai
- 35. Rahman G, Rahman A-u, Ullah S, Dawood M, Moazzam MFU, Lee BG (2021) Spatiotemporal characteristics of meteorological drought in Khyber Pakhtunkhwa, Pakistan. PLOS One. https:// doi.org/10.1371/journal.pone.0249718
- 36. Rahman G, Rahman A-u, Anwar MM et al (2022) Spatio-temporal analysis of climatic variability, trend detection, and drought assessment in Khyber Pakhtunkhwa, Pakistan. Arab J Geosci. https://doi.org/10.1007/s12517-021-09382-4
- 37. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Mathem 20:53-65
- 38. Safdar F, Khokhar MF, Mahmood F, Ali K, Muhammad Z, Arshad M (2022) Observed and predicted precipitation variability across Pakistan with special focus on winter and pre-monsoon precipitation. Environ Sci Pollut Res. https://doi.org/10.1007/ s11356-022-22502-1
- 39. Santos CAG, Neto RMB, da Silva RM, Costa SGF (2019) Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba State using Tropical Rainfall Measuring Mission (TRMM) data. Rem Sens. https://doi.org/10.3390/rs11060637
- 40. Sotomayor G, Hampel H, Vázquez Raú F (2018) Water quality assessment with emphasis in parameter optimisation using pattern recognition methods and genetic algorithm. Wat Res. https://doi.org/ 10.1016/j.watres.2017.12.010
- 41. Stanimirova I, Daszykowski M (2018) Chapter nine-exploratory analysis of metabolomic data. Compreh Analy Chem 82:227-264. https://doi.org/10.1016/bs.coac.2018.08.005
- 42. Tajbar S, Rafiq L, Bibi S, Saidullah M (2020) Photovoltaic geographical information system module for the estimation of solar electricity generation: a comparative study in Khyber Pakhtunkhwa Pakistan. J Energy Sys 4(1):12-21. https://doi.org/10.30521/jes. 690717
- 43. Ullah W, Wang G, Ali G, Hagan DFT, Bhatti AS, Lou D (2019a) Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Rem Sens 11(6):628. https://doi.org/10.3390/rs11060628
- 44. Ullah H, Akbar M, Khan F (2019b) Construction of homogeneous climatic regions by combining cluster analysis and L-moment approach on the basis of Reconnaissance Drought Index for Pakistan. Int J Climatol. https://doi.org/10.1002/joc.621410.1002/joc. 6214
- 45. Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23:1045-1055
- 46. Ur Rahman A, Khan AN (2013) Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa. Pakistan Nat Haz 66(2):887-904
- 47. Wang M, Ding Z, Wu C, Song L, Ma M, Yu P, Lu B, Tang X (2020) Divergent responses of ecosystem water-use efficiency to extreme seasonal droughts in Southwest China. Sci Total Environ. https:// doi.org/10.1016/j.scitotenv.2020.143427
- 48. Wen X, Tu Y, Tan Q, Li W, Fang G, Ding Z, Wang Z (2020) Construction of 3D drought structures of meteorological drought events and their spatio-temporal evolution characteristics. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125539
- 49. Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic Press, San Diego, p 467
- 50. Xia X, Liu Y, Jing W, Yao L (2021) Assessment of four satellite-based precipitation products over the pearl river basin, China. IEEE Access 9:97729-97746. https://doi.org/10.1109/ACCESS.2021. 3095239
- 51. Xue M, Hang R, Liu Q, Yuan X-T, Lu X (2020) CNN-based nearreal-time precipitation estimation from Fengyun-2 satellite over Xinjiang, China. Atmos Res. https://doi.org/10.1016/j.atmosres. 2020.105337
- 52. Yu B, Lupo AR (2019) Large-Scale atmospheric circulation variability and its climate impacts. Atmosphere. https://doi.org/10.3390/ atmos10060329
- 53. Zerouali B, Chettih M, Abda Z, Mesbah M, Santos CAG, Neto RMB (2022) A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theor Appl Climatol 147:1489-1510. https://doi. org/10.1007/s00704-021-03883-8
- 54. Zhao N, Yue T, Lid H, Lili Z, Yin X, Liu Y (2018) Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China. Atmosp Res 202:156-168. https://doi.org/10.1016/j.atmosres. 2017.11.029
- 55. Zheng S, Zhao J (2018) States identification of complex chemical process based on unsupervised learning. Comp Aided Chem Engin 44:2239-2244. https://doi.org/10.1016/B978-0-444-64241-7. 50368-2
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a18b07f4-500c-4c8e-b593-0e8a14c35da0