Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 43, No. 1 | 25--43
Tytuł artykułu

Spherical harmonics expansion of the atmospheric gravitational potential based on exponential and power models of atmosphere

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spherical harmonic formulation of gravitational potential of the atmosphere depends on the analytical model of the atmospheric density which is used. Exponential and power models are two well-known mathematical tools which are used in atmospheric applications. This paper presents simple formulas for the harmonic coefficients of internal and external types of the atmospheric potential based on these models which can be used in most of the gravimetric aspects. It considers the atmospheric effect on the satellite gravity gradiometry data as an example for numerical investigations. The numerical studies on these data show that the maximum atmospheric effect is about 2 mE over Fennoscandia based on both models, and their differences are less than 0.1 mE. The difference between indirect atmospheric effects reaches 2 cm and 0.02 mGal on the geoid and gravity anomaly, respectively in this region.
Wydawca

Rocznik
Strony
25--43
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden, eshagh@kth.se
Bibliografia
  • Anderson EG., and Mather RR. (1975) Atmospheric effects in physical geodesy. Unisurv G23:23-41, University of NSW, Sydney, Australia.
  • Ecker E. and Mittermayer E. (1969) gravity corrections for the influence of the atmosphere. Boll Geofis Teor Appl., 11:70-80.
  • Eshagh M. and Sjöberg L.E. (2009) Atmospheric effect on satellite gravity gradiometry data, Journal of Geodynamic,47:9-19.
  • F. Flechtner, R. Schmidt, and U. Meyer. De-aliasing of short-term atmospheric and oceanic mass variations for GRACE (2006). In J. Fluty, R. Rummel, C. Reigber, M. Rotacher, G. Boedeker, and U. Schreiber, editors, Observation of the Earth system from space, pages 189-214, Springer, Berlin.
  • Heidelberg. Heiskanen W. and Moritz H. (1967) Physical geodesy. W.H. Freeman, San Francisco.
  • Lambeck K. (1988) Geophysical Geodesy, the Slow Deformations of the Earth. Clarendon, Oxford University Press, New York.
  • Nahavandchi H. (2004) A new strategy for the atmospheric gravity effect in gravimetric geoid determination, J Geod., 77:823-828.
  • Novák P. (2000) Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem, Technical report 207, department of geodesy and geomatics Engineering, university of New Brunswick, Fredericton, Canada.
  • Novák P. and Grafarend W.E. (2006) The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data, Stud. Geophys. Geod., 50:549-582.
  • Petrovskaya M.S. and Vershkov A.N. (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames, J Geod., 80:117-127.
  • Reference Atmosphere Committee (1961). Report of the preparatory group for an international reference atmosphere accepted at the COSPAR Meeting in Florance, April 1961. North Holland Publ. Co., Amsterdam.
  • Sjöberg L.E. (1993) Terrain effects in the atmospheric gravity and geoid correction. Bull Geod., 64:178-184.
  • Sjöberg L.E. (1998) The atmospheric geoid and gravity corrections, Bollettino di geodesia e scienze affini-N.4.
  • Sjöberg L.E. (1999) The IAG approach to the atmospheric geoid correction in Stokes’s formula and a new strategy, J Geod., 73:362-366.
  • Sjöberg L.E. (2001) Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one, J Geod., 75:283-290.
  • Sjöberg L.E. (2006) The effects of Stokes’s formula for an ellipsoidal layering of the earth’s atmosphere, J Geod., 79:675-681.
  • Sjöberg L.E. and Nahavandchi. H. (1999) On the indirect effect in the Stokes-Helmert method of geoid determination. J Geod., 73:87-93.
  • Sjöberg L.E. and Nahavandchi H. (2000) The atmospheric geoid effects in Stokes formula, Geophy J Int 140:95-100.
  • Sun W. and Sjöberg L.E. (2001) Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections, J Geod., 74:627-636.
  • Tenzer R., Novák P., Moore P. and Vajda P. (2006) Atmospheric effects in the derivation of geoid-generated gravity anomalies, Stud. Geophys. Geod., 50:583-593.
  • United State Standard Atmosphere (1976) Joint model of the National Oceanic and Atmospheric administration, national aeronautics and space administration and United States air force, Washington, D.C.
  • Wieczorek M. A., 2007, The gravity and topography of the terrestrial planets, Treatise on Geophysics, in press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a17f3cbb-03eb-4e5b-aa25-b81d0c1b9595
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.