Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 22, no. 1 | 31--38
Tytuł artykułu

Anisotropy of effective thermal conductivity analysis of heat transfer coefficient distribution around spherical particles in a packed bed

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effective thermal conductivity with radiation is analyzed by a homogenization method. The method used can precisely represent the conditions around particles in a packed bed. In this study, the effects of variation in parameters such as heat transfer coefficient distribution around spherical particles in a packed bed, Reynolds number, temperature and particle size on the conductivity were estimated in order to elucidate the heat transfer mechanism of complex packed structures. The results show that it is unnecessary in heat transfer analysis to consider the anisotropic behavior of the flow direction for larger particles, high Reynolds numbers and high temperatures. However, the heat transfer was anisotropic for smaller particle sizes.
Wydawca

Rocznik
Strony
31--38
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical and Systems Engineering, University of Hyogo 2167 Shosha, Himeji, Hyogo 671-2280, Japan , asakuma@eng.u-hyogo.ac.jp
autor
  • Department of Mechanical and Systems Engineering, University of Hyogo 2167 Shosha, Himeji, Hyogo 671-2280, Japan
autor
  • Department of Mechanical and Systems Engineering, University of Hyogo 2167 Shosha, Himeji, Hyogo 671-2280, Japan
autor
  • Department of Chemical Engineering, Kyushu University Japan
Bibliografia
  • [1] W.E. Ranz, W.R. Marshall. Evaporation from drops. Chem. Eng. Prog., 48: 141–146, 1952.
  • [2] N. Wakao, S. Kaguei, T. Funazkri. Effect of fluid dispersion coefficients on particleto-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci., 34: 325–336, 1979.
  • [3] N. Wakao, S. Kaguei. Heat and mass transfer in packed beds. Gordon and Breach Science Publishers, 3: 177–187, 1982.
  • [4] Y. Asakuma, Y. Kanzawa, T. Yamamoto. Thermal radiation analysis of packed bed by a homogenization method. Int. J. Heat and Mass Trans., 73: 97–102, 2014.
  • [5] K. Terada, T. Ito, N. Kikuchi. Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng., 153: 223–257, 1998.
  • [6] S. Chang, S. Yang, H. Shin, M. Cho. Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles. Composite Structures, 128: 342–353, 2015.
  • [7] R.P.A. Rocha, M.E. Cruz. Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numerical Heat Transfer Part A, 39: 179–203, 2001.
  • [8] A. El Moumen, T. Kanit, A. Imad, H. El Minor. Computational thermal conductivity in porous materials using homogenization techniques: numerical and statistical approaches. Computational Materials Science, 97: 148–158, 2015.
  • [9] P.W. Chung, K.K. Tamma. Homogenization of temperature-dependent thermal conductivity in composite materials. J. Thermophysics and Heat Transfer, 15(1): 10–17, 2001.
  • [10] Y. Chen, S. Zhou, R. Hu, C. Zhou. A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites. International Journal of Heat and Mass Transfer, 83: 731–740, 2015.
  • [11] V.I. Kushch, I. Sevostianov, V.S. Chernobai. Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. International Journal of Engineering Science, 83: 146–161, 2014.
  • [12] M. Mendes, S. Ray, D. Trimis. A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. International Journal of Heat and Mass Transfer, 66: 412–422, 2013.
  • [13] Y. Asakuma, S. Miyauchi, T. Yamamoto, H. Aoki, T. Miura. Homogenization method for effective thermal conductivity of metal hydride bed. International Journal of Hydrogen Energy, 29: 209–216, 2004.
  • [14] S. Hirasawa, T. Kawanami, T. Kinoshita, T. Watanabe, T. Atarashi. Numerical analysis of forced convection heat transfer around spherical particles packed in fluid flow. J. Phys.: Conf. Ser., 395: 012143, 2012.
  • [15] H. Sun, S. Di, N. Zhang, W. Changchun. Micromechanics of composite materials using multivariable finite element method and homogenization theory. Int. J. Solids and Structures, 38: 3007–3020, 2001.
  • [16] L.P. Chew. Constrained Delaunay triangulations. Algorithmica, 4: 97–108, 1989.
  • [17] S. Yagi, D. Kunii. Studies on effective thermal conductivities in packed beds. AIChE Journal, 3: 373–381, 1957.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a12966b8-70e8-456a-b4c2-8bbdeb01ed1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.