Warianty tytułu
Języki publikacji
Abstrakty
The article aims to characterize Hadfield steel by analyzing its chemical composition, mechanical properties, and microstructure. The study focused on the twinning-induced work hardening of the alloy, which led to an increase in its hardness. The experimental data show that the material hardness at the surface improved considerably after solution heat treatment and work hardening, reaching more than 750 HV. By contrast, the hardness of the material core in the supersaturated condition was about 225 HV. The chemical and phase compositions of the material at the surface were compared with those of the core. The microstructural analysis of the steel revealed characteristic decarburization of the surface layer after solution heat treatment. The article also describes the effects of heat treatment on the properties and microstructure of Hadfield steel. The volumetric (qualitative) analysis of the computed tomography (CT) data of Hadfield steel subjected to heavy dynamic loading helped detect internal flaws, assess the material quality, and potentially prevent the structural failure or damage of the element tested.
Czasopismo
Rocznik
Tom
Strony
14--20
Opis fizyczny
Bibliogr. 28 poz., il., tab., wykr.
Twórcy
autor
- Kielce University of Technology, Poland, damianbankowski1@gmail.com
autor
- Kielce University of Technology, Poland
autor
- Kielce University of Technology, Poland
autor
- Kielce University of Technology, Poland
Bibliografia
- [1] Kalandyk, B., Tęcza, G., Zapała, R., Sobula, S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in miller test. Archives of FoundryEngineering.15(2), 35-38. DOI: 10.1515/afe-2015-0033.
- [2] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in light weight advanced high-strength steel castings. International Journal of Metalcasting.10, 401-420, DOI:10.1007/s40962-016-0048-0.
- [3] Guzman Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM-International Engineering Journal.73(5), 77-83. https://doi.org/10.1590/0370-44672019730023.
- [4] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018).Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729,178-184. DOI:10.1016/j.msea.2018.05.059.
- [5] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu, B.D. (2017). Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering. 679, 95-103. DOI:10.1016/j.msea. 2016.09.106.
- [6] Bolanowski, K. (2008). Wear of working elements made of Hadfield cast steel under industrial conditions. Problemy Eksploatacji. 2, 25-32.
- [7] Tęcza, G., Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of FoundryEngineering.14(3), 67-70.
- [8] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021).Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1.
- [9] Pribulová, A., Babic, J. & Baricová, D. (2011). Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
- [10] Przybyłowicz, K. (2008). Iron alloys engineering. Kielce: Wyd. Politechniki Świętokrzyskiej w Kielcach (in Polish).
- [11] Stradomski, Z. (2001). On the explosive hardening of cast Hadfield steel. Proceedings of a Conference on Advanced Steel Casting Technologies. Kraków. 112-122. (in Polish).
- [12] Cullity, B.D. (1964).Basics of X-ray diffraction. Warszawa: PWN. (in Polish).
- [13] Bolanowski, K. (2013).The influence of the hardness of the surface layer on the abrasion resistance of Hadfield cast steel. Problemy Eksploatacji. 1, 127-139. (in Polish).
- [14] Przybyłowicz, K.(2012).Metal Science. Warszawa: WNT. (in Polish).
- [15] El Fawjhry, M.K.(2018).Feasibility of new ladle-treated Hadfield steel for mining purposes. International Journal of Minerals, Metallurgy and Materials. 25(3), 300, https://doi.org/10.1007/s12613-018-1573-z.
- [16] Subramanyan, D. K, Swansieger, A. E. and Avery, H. S.(1990). Austenitic manganese steels. In ASM Metals Handbook. Vol. 1,10th Ed. (p. 822-840). India: American Society of Metals, India.
- [17] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe-14Mn-1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
- [18] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel in Translation. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
- [19] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
- [20] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011 (pp. 763-771). Indianapolis, USA.
- [21] El Fawkhry, M.K. (2021). Modified hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5.
- [22] EI Fawkhry, M.K., Fathy, A.M. and Eissa, M.M. (2015). New energy saving technology for producing Hadfield steel to high gouging applications. Steel Research International. 86(3), 223-230. https://doi.org/10.1002/srin.201300388.
- [23] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. International Journal of Metal casting. 8, 29-36. DOI: 10.1007/BF03355569.
- [24] Sobula, S., Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 4, 82-86. ISSN (1897-3310).
- [25] Zambrano, O.A., Tressia, G., Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: doi.org/10.1016/j.engfailanal.2020.104621.
- [26] Wróbel, T., Bartocha, D., Jezierski, J., Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks E. High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In Współpraca 2023: XXIX international scientific conference of Polish, Czech and Slovak foundry men, 26-28 April 2023. Niepołomice.
- [27] Młyński, M., Sobula, S., Furgał, G. (2001). Economic aspects of the oxygen-recovery melts of Hadfield cast steel in the Foundry of Metalodlew S.A. Przegląd Odlewnictwa. 51(11), 382-384. (in Polish).
- [28] Wróbel, T., Bartocha, D., Jezierski, J., Sobula, S., Kostrzewa K., Feliks E. (2023). High-manganese alloy cast steel used for cast elements of railway infrastructure. Stal, Metale & Nowe Technologie. 1-2, 30-34. (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a1087e8b-984f-4415-ab23-d93ed3d66a2e