Warianty tytułu
Języki publikacji
Abstrakty
Abundance, biomass, and taxonomic composition of the ciliate community were studied in the surface waters along a transect between 50°S 61°W and 48°N 5°W (Atlantic Ocean, March-April 2011). The abundance of heterotrophic ciliates was low in the equatorial zone (280–320 cells l−1, 0.11–0.12 μg C l−1), but it increased toward both the northern and southern temperate zones with the maximum abundance observed at 44°S (2667 cells l−1, 0.82 μg C l−1). This pattern resembles the global distribution of oceanic primary production, which is low at lower latitudes and high in temperate zones. In temperate zones ciliate abundance peaks during spring and fall. Thus, because the present study was carried out during spring in the northern hemisphere and austral fall in the southern hemisphere, the ciliate abundance at higher latitudes was additionally elevated. Functionally autotrophic Mesodinium rubrum was only observed in the northern hemisphere and tropical waters. Its maximum abundance was observed at 48°N (1080 cells l−1, 1.14 μg C l−1). The most frequently observed ciliates were oligotrichs and choreotrichs. Other important ciliates were haptorids (including M. rubrum) and hypotrichs.
Czasopismo
Rocznik
Tom
Strony
4436--441
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland, krychert@wp.pl
autor
- Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
autor
- Institute of Physics, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
autor
- Institute of Physics, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
Bibliografia
- 1. Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 76: 387–396.
- 2. Beers, J.R., Reid F.M.H. & Stewart G.L. (1982). Seasonal abundance of the microzooplankton population in the North Pacific Central Gyre. Deep-Sea Res. 29: 227–245.
- 3. Caron, D.A. & Hutchins D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235–252. DOI: 10.1093/plankt/fbs091.
- 4. Dolan, J.R. & Pierce R.W. (2013). Diversity and distributions of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 214–243). Chichester: Wiley-Blackwell.
- 5. Froneman, P.W. (2004). Protozooplankton community structure and grazing impact in the eastern Atlantic sector of the Southern Ocean in austral summer 1998. Deep-Sea Res. Pt. II 51: 2633–2643. DOI: 10.1016/j.dsr2.2004.09.001.
- 6. Froneman, P.W. & Perissinotto R. (1996). Structure and grazing of the microzooplankton communities of the Subtropical Convergence and a warm-core eddy in the Atlantic sector of the Southern Ocean. Mar. Ecol. Prog. Ser. 135: 237–245.
- 7. Garcia-Cuetos, L., Moestrup Ø. & Hansen P.J. (2012). Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J. Eukaryot. Microbiol. 59: 374–400. DOI: 10.1111/j.1550-7408.2012.00630.x.
- 8. Gifford, D.J. (1991). The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86.
- 9. Hasle, G.R. (1978). The inverted microscope method. In A. Sournia (Ed.), Phytoplankton Manual (pp. 88–96). Paris: Unesco.
- 10. Huston, M.A. & Wolverton S. (2009). The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79: 343–377.
- 11. Leakey, R.J.G., Burkill P.H. & Sleigh M.A. (1996). Planktonic ciliates in the northwestern Indian Ocean: their abundance and biomass in waters of contrasting productivity. J. Plankton Res. 18: 1063–1071.
- 12. Lessard, E.J. & Murrell M.C. (1996). Distribution, abundance and size composition of heterotrophic dinoflagellates and ciliates in the Sargasso Sea near Bermuda. Deep-Sea Res. Pt. I 43: 1045–1065.
- 13. Liu, H.X., Li G., Tan Y.H., Ke Z.X., Huang J.R. et al. (2013). Latitudinal changes (6°S–20°N) of summer ciliate abundance and species compositions in surface waters from the Java Sea to the South China Sea. Acta Oceanol. Sin. 32: 66–70. DOI: 10.1007/s13131-013-0299-z.
- 14. McManus, G.B. & Santoferrara L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198–213). Chichester: Wiley-Blackwell.
- 15. Menden-Deuer, S. & Lessard E. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569–579.
- 16. Montagnes, D.J.S. & Lynn D.H. (1989). The annual cycle of Mesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. J. Plankton Res. 11: 193–201.
- 17. Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2008). Factors controlling the abundance and size distribution of the phototrophic ciliate Myrionecta rubra in open waters of the North Atlantic. J. Eukaryot. Microbiol. 55: 457–465. DOI: 10.1111/j.1550-7408.2008.00344.x.
- 18. Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411: 101–115. DOI 10.3354/meps08646.
- 19. Ota, T. & Taniguchi A. (2003). Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea Res. Pt. II 50: 423–442.
- 20. Porter, K.G., Sherr E.B., Sherr B.F., Pace M. & Sanders R.W. (1985). Protozoa in planktonic food webs. J. Protozool. 32: 409–415.
- 21. Putt, M. & Stoecker D.K. (1989). An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.
- 22. Quevedo, M., Viesca L., Anadón R. & Fernández E. (2003). The protistan microzooplankton community in the oligotrophic north-eastern Atlantic: large- and mesoscale patterns. J. Plankton Res. 25: 551–563.
- 23. Rychert, K. (2004). The size structure of Mesodinium rubrum population in the Gdańsk Basin. Oceanologia 46: 439–444.
- 24. Rychert, K., Spich K., Laskus K., Pączkowska M., Wielgat-Rychert M. et al. (2013). Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268–276. DOI: 10.2478/s13545-013-0083-x.
- 25. Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28: 345–359. DOI: 10.1093/plankt/fbi118.
- 26. Santoferrara, L. & Alder V. (2009). Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35–63°S): a comparison between neritic and oceanic environments. J. Plankton Res. 31: 837–851. DOI: 10.1093/plankt/fbp033.
- 27. Sherr, E.B. & Sherr B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293–308.
- 28. Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11.
- 29. Sohrin, R., Imazawa M., Fukuda H. & Suzuki Y. (2010). Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. Pt. II 57: 1537–1550. DOI: 10.1016/j.dsr2.2010.02.020.
- 30. Sorokin, Y.I., Kopylov A.I. & Mamaeva N.V. (1985). Abundance and dynamics of microplankton in the central tropical Indian Ocean. Mar. Ecol. Prog. Ser. 24: 27–41.
- 31. Stoecker D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122–144). Chichester: Wiley-Blackwell.
- 32. Stoecker, D.K., Sieracki M.E., Verity P.G., Michaels A.E., Haugen E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427–443.
- 33. Stoecker, D.K., Taniguchi A. & Michaels A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241–254.
- 34. Stukel, M.R. & Landry M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669–2685. DOI: 10.4319/lo.2010.55.6.2669.
- 35. Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132: 375–382.
- 36. Tett, P. & Wilson H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431–446.
- 37. Vaque, D., Alonso-Sáez L., Arístegui J., Agustí S., Duarte C.M. et al. (2014). Bacterial production and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean. J. Plankton Res. 36: 198–213. DOI: 10.1093/plankt/fbt085.
- 38. Verity, P.G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859–867.
- 39. Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1993). Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47N, 18W. Deep-Sea Res. Pt. I 40: 1793–1814.
- 40. Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1996). Microzooplankton grazing of primary production at 140 W in the equatorial Pacific. Deep-Sea Res. Pt. II 43: 1227–1255.
- 41. WoRMS Editorial Board. 2014. World Register of Marine Species, Retrieved April 18, 2014, from http://www.marinespecies.org
- 42. Yang, E.J., Choi J.K. & Hyun J.-H. (2004). Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146: 1–15. DOI: 10.1007/s00227-004-1412-9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a104a81c-3546-4ea3-8e2d-5978fcde22c5