Warianty tytułu
Języki publikacji
Abstrakty
Positive pressure ventilators are exposed to self-shifting during their operation. The aim of the article was to perform research analysing dynamic excitations resulting from vibrations caused by the operation of the drive system. The tests included four different fans, including one with an electric drive. The tests carried out made it possible to determine the effective RMS R value of vibrations, which is a maximum of 0.970 G, and the direction of the excitation relative to the vertical and horizontal axes. In addition, the values of vibration amplitudes on individual axes of the adopted reference system were determined. In this case, the highest values were measured on the vertical axes for combustion-powered ventilators (vibration value from 20 to 35 m/s2 ) and in the axis along the fan rotor for electric-powered ventilators (vibration value from 1.1 m/s2).
Rocznik
Tom
Strony
142--154
Opis fizyczny
Bibliogr. 46 poz., fig., tab.
Twórcy
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, bartosz.wieczorek@put.poznan.pl
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, pkaczmarzyk@cnbop.pl
- Scientific and Research Centre for Fire Protection, National Research Institute, Poland
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, lukasz.wargula@put.poznan.pl
autor
- Institute of Architecture and Spatial Planning, Poznan University of Technology, marcin.giedrowicz@put.poznan.pl
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Poland, dkbak@cnbop.pl
autor
- Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, lukasz.gierz@put.poznan.pl
autor
- Technical University of Sofia, Sofia, Bulgaria, gstamb@gmail.com
autor
- Angel Kanchev University of Rousse, Ruse, Bulgaria, bkostov@uni-ruse.bg
Bibliografia
- 1. Kaczmarzyk, P.; Klapsa, W.; Janik, P.; Krawiec, P. Identification and evaluation of technical and operational parameters of mobile positive pressure ventilation fans used during rescue operations. Saf. Fire Technol. 2021, 58, 74.
- 2. Min, S.; Yun, J.; Lee, J. A Study on the evaluation of simulation and performance test for the development of high pressure hose. J. Korean Soc. Hazard Mitig. 2018, 18, 195–202, doi:10.9798/KOSHAM.2018.18.4.195.
- 3. Eremina, T.; Nesterov, M.; Korolchenko, D.; Giletich, A. Problematic issues of quality, certification and tests of fire-fighting technical production. E3S Web Conf. 2020, 164, 14023, doi:10.1051/e3sconf/202016414023.
- 4. Fritsche, M.; Epple, P.; Delgado, A. Development of a measurement method for the classification and performance evaluation of positive pressure ventilation (PPV) fans. American Society of Mechanical Engineers Digital Collection, October 24 2018.
- 5. Kaczmarzyk, P.; Warguła, Ł.; Janik, P.; Krawiec, P. Influence of measurement methodologies for the volumetric air flow rate of mobile positive pressure fans on drive unit performance. Energies 2022, 15, 3953, doi:10.3390/en15113953.
- 6. Lambert, K.; Merci, B. Experimental study on the use of positive pressure ventilation for fire service interventions in buildings with staircases. Fire Technol. 2014, 50, 1517–1534, doi:10.1007/s10694-013-0359-0.
- 7. Kaczmarzyk, P.; Warguła, Ł.; Krawiec, P.; Janik, P.; Noske, R.; Klapsa, W. Influence of the positive pressure ventilator setting distance in front of the doorway on the effectiveness of tactical mechanical ventilation in a multistory building. Appl. Sci. 2023, 13, 5536, doi:10.3390/app13095536.
- 8. Kaczmarzyk, P.; Janik, P.; Małozięć, D.; Klapsa, W.; Warguła, Ł. Experimental studies of the impact of the geometric dimensions of the outlet opening on the effectiveness of positive pressure ventilation in a multi-storey building – flow characteristics. Appl. Sci. 2023, 13, 5714, doi:10.3390/app13095714.
- 9. Warguła, Ł.; Kaczmarzyk, P. Legal regulations of restrictions of air pollution made by mobile positive pressure fans – the case study for Europe: A Review. Energies 2022, 15, 7672, doi:10.3390/en15207672.
- 10. Warguła, Ł.; Kaczmarzyk, P.; Lijewski, P.; Fuć, P.; Markiewicz, F.; Małozięć, D.; Wieczorek, B. Effect of the volumetric flow rate measurement methodology of positive pressure ventilators on the parameters of the drive unit. Energies 2023, 16, 4515, doi:10.3390/en16114515.
- 11. Krawiec, P.; Warguła, Ł.; Czarnecka-Komorowska, D.; Janik, P.; Dziechciarz, A.; Kaczmarzyk, P. Chemical compounds released by combustion of polymer composites flat belts. Sci. Rep. 2021, 11, 8269, doi:10.1038/s41598-021-87634-9.
- 12. Krawiec, P.; Warguła, Ł.; Małozięć, D.; Kaczmarzyk, P.; Dziechciarz, A.; Czarnecka-Komorowska, D. The toxicological testing and thermal decomposition of drive and transport belts made of thermoplastic multilayer polymer materials. Polymers 2020, 12, 2232, doi:10.3390/polym12102232.
- 13. Krawiec, P.; Warguła, Ł.; Dziechciarz, A.; Małozięć, D.; Ondrušová, D. Ocena emisji związków chemicznych podczas rozkładu termicznego i spalania pasów klinowych. Przem. Chem. 2020, 99(1), doi:10.15199/62.2020.1.12.
- 14. Rabajczyk, A.; Zielecka, M.; Małozięć, D. Hazards resulting from the burning wood impregnated with selected chemical compounds. Appl. Sci. 2020, 10, 6093, doi:10.3390/app10176093.
- 15. Chen, Y.; Ni, J.-Q.; Diehl, C.A.; Heber, A.J.; Bogan, B.W.; Chai, L.-L. Large scale application of vibration sensors for fan monitoring at commercial layer hen houses. Sensors 2010, 10, 11590–11604, doi:10.3390/s101211590.
- 16. Dhamande, L.S.; Bhaurkar, V.P.; Patil, P.N. Vibration analysis of induced draught fan: A case study. Mater. Today Proc. 2023, 72, 657–663, doi:10.1016/j.matpr.2022.08.329.
- 17. Benchekroun, M.T.; Zaki, S.; Hezzem, B.; Laacha, H. Kiln process fan vibrations prediction based on machine learning models: Application to the raw mill fan. Comput. Sci. Math. Forum 2023, 6. doi:10.3390/cmsf2023006006.
- 18. Rusiński, E.; Odyjas, P. Przyczyny drgań wentylatorów w układach przewietrzania kopalń. Syst. J. Transdiscipl. Syst. Sci. 2012, 327–336.
- 19. Jovanović, D.; Živković, N.; Raos, M.; Zivkovic, L.; Jovanovic, M.; Praščevič, M. Testing of level of vibration and parameters of bearings in industrial fan. Appl. Mech. Mater. 2013, 430, 118–122. doi:10.4028/www.scientific.net/AMM.430.118.
- 20. Lee, J.-H.; Choi, H.-S.; Sohn, J.-H.; Lee, G.-H.; Park, D.-I.; Kim, J.-G. Statistical analysis for transmission error of gear system with mechanical and thermal deformation uncertainties. Appl. Sci. 2021, 11.
- 21. Lewandowski, J.; Rozumek, D. Ocena stopnia zużycia zespołu wentylatora na podstawie pomiaru i analizy drgań łożysk. J. Civ. Eng. Environ. Archit. 2017, 64, 159–168.
- 22. Zachwieja, J. Diagnostyka wentylatorów dustrumieniowych. Diagnostyka 2003, 29, 35–40.
- 23. Feese, T.; Maxfield, R. Torsional vibration problem with Motor/ID fan system due to PWM variable frequency drive. Lecture 5: Torsional Vibration Problem with Motor/ID Fan System Due to PWM Variable Frequency Drive 2008, doi:10.21423/R1VM07.
- 24. Eckert, L. High cycle fatigue cracks at radial fan impellers caused by aeroelastic self-excited impeller vibrations: Part I – case history. Root Cause Analysis, Vibration Measurements. American Society of Mechanical Engineers Digital Collection, February 5, 2021; 1135–1146.
- 25. Teng, C.; Trabia, M.B.; Reynolds, D. Methods for resolving fan/motor vibration problems in airconditioning units: Part I – analytical models for identifying vibration modes excited by fan impeller unbalance. ASHRAE Trans. 104.
- 26. Zhao, X.; Sun, J.; Gao, R.; Zhang, Z.; Xue, W. Quantitative evaluation of flow-induced fan casing structural vibration and noise radiation of air-conditioner outdoor unit. American Society of Mechanical Engineers Digital Collection, September 18, 2014.
- 27. Cai, J.-C.; Qi, D.-T.; Lu, F.-A. Numerical studies on fan casing vibration and noise radiation. American Society of Mechanical Engineers Digital Collection, February 16, 2010; 255–264.
- 28. Harazin, B. Narażenie na drgania mechaniczne a ocena ryzyka zdrowotnego operatorów ręcznych narzędzi wibracyjnych. Ochr. Zdrowia Prac. 1996.
- 29. Harazin, B. Ocena i interpretacja wyników pomiaru drgań mechanicznych na stanowiskach pracy. Bezp. Pr., 1996.
- 30. Harazin, B. Harazin, B. Nowe wartości NDN drgań mechanicznych na stanowiskach pracy. Bezp. Pr. Nauka Prakt. 2002, 5–6.
- 31. PN EN ISO 5349-2. Drgania mechaniczne. pomiar i wyznaczanie ekspozycji człowieka na drgania przenoszone przez kończyny górne. Część 2: Praktyczne wytyczne do wykonywania pomiarów na stanowisku pracy, 2004.
- 32. Von Gierke, H.E.; Coermann, R.R. The biodynamics of human response to vibration and impact. Ind. Med. Surg. 1963, 32, 30–32.
- 33. Seidel, H.; Heide, R. Long-term effects of wholebody vibration: A critical survey of the literature. Int. Arch. Occup. Environ. Health 1986, 58, 1–26, doi:10.1007/BF00378536.
- 34. Kaczmarzyk, P.; Warguła, Ł.; Janik, P. Experimental studies of the influence of mobile fan positioning parameters on the ability to transport the air stream into the door opening. Sci. Rep. 2023, 13, 14976, doi:10.1038/s41598-023-42147-5.
- 35. Dahlgren, B.E.; Nilsson, H.G.; Peters, B.; Skedevik, C. Portable emergency ventilators: 2. Sensitivity to environment. Acta Anaesthesiol. Scand. 1985, 29, 753–757, doi:10.1111/j.1399-6576.1985.tb02295.x.
- 36. Kapler, J.; Letal, J.; Sasic, M.; Stone, G.C. Recent endwinding vibration problems in air-cooled turbine generators. Proc. CIGRE Biennial Session, 2014, 21.
- 37. Mansoor, H.I.; Al-shammari, M.A.; Al-Hamood, A. Experimental analysis of cracked turbine rotor shaft using vibration measurements. J. Mech. Eng. Res. Dev. 2020, 43, 294–304.
- 38. Kurkiewicz, J.; Serwicki, T. An Experimental investigation of electric motor vibrations caused by inverter supply. Mach. Technol. Mater. 2015, 9, 71–74.
- 39. Vasilevskyi, О.М.; Kulakov, P.I.; Didych, V.M. Technique of research uncertainty dynamic measurements of vibration acceleration of rotating machines. IOSR J. Electr. Electron. Eng. 2016, 11, 34–39, doi:10.9790/1676-1105033439.
- 40. Ismagilov, F.R.; Vavilov, V.Ye.; Ayguzina, V.V.; Petrov, I.; Pyrhönen, J. 100-kW high-speed electric motor for the air conditioning system of more electric aircrafts. Proceedings of the 2020 International Conference on Electrical Machines (ICEM); August 2020; 1, 559–564.
- 41. Lostari, A.; Susastro, S.; Machfuroh, T. Modeling and vibration response analysis of pellet machine grinder and gearbox. Sintek J. J. Ilm. Tek. Mesin 2020, 14, 99–106, doi:10.24853/sintek.14.2.99-106.
- 42. Szymański, G.M.; Krawiec, P. Testing and analysis of vibration of a tension transmission with a thermally sealed belt. Proceedings of the Perspectives in Dynamical Systems III: Control and Stability; Awrejcewicz, J., Ed.; Springer International Publishing: Cham, 2021; 117–128.
- 43. Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal regulations of restrictions of air pollution made by non-road mobile machinery—the case study for europe: A review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. doi:10.1007/s11356-017-0847-8.
- 44. Warguła, Ł.; Lijewski, P.; Kukla, M. Influence of non-commercial fuel supply systems on small engine SI exhaust emissions in relation to european approval regulations. Environ. Sci. Pollut. Res. 2022, 29, 55928–55943. doi:10.1007/s11356-022-19687-w.
- 45. Kończak, M.; Kukla, M.; Warguła, Ł.; Talaśka, K. Determination of the vibration emission level for a chipper with combustion engine. IOP Conf. Ser. Mater. Sci. Eng. 2020, 776, 012007. doi:10.1088/1757-899X/776/1/012007.
- 46. Gravalos, I.; Moshou, D.; Gialamas, T.; Kateris, D.; Xyradakis, P.; Tsiropoulos, Z. Vibration effects on spark ignition engine fuelled with methanol and ethanol gasoline blends. J. Agric. Mach. Sci. 2011, 7, 367–372.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a0d69869-738a-420c-a78c-f25e5a88220f