Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 124, nr 1/2 | 111--132
Tytuł artykułu

Simulated Activation Patterns of Biological Neurons Cultured onto a Multi-Electrode Array Based on a Modified Izhikevich's Model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently we have witnessed research efforts into developing real-time hybrid systems implementing interactions between computational models and live tissues, in an attempt to learn more about the functioning of biological neural networks. A fundamental role in the development of such systems is played by Multi-Electrode Array (MEA). In vitro cultures of neurons on MEAs, however, have some drawbacks such as: needing a rigorous adherence to sterile techniques, careful choice and replenishment of media and maintenance of pH, temperature, and osmolarity. An alternative way to study and investigate live tissues which partially circumvent some of the problems with in vitro cultures is by simulating them. This paper describes the proposal of Sim-MEA, a system for modeling and simulating neuron's communications in a MEA-based in vitro culture. Sim-MEA implements a modified Izhikevich model that takes into account both: distances between neurons and distances between microelectrodes and neurons. The system also provides ways of simulating microelectrodes and their recorded signals as well as recovering experimental MEA culture data, from their images. The soundness of the Sim-MEA simulation procedure was empirically evaluated using data from an experimental in vitro cultured hippocampal neurons of Wistar rat embryos. Results from simulations, compared to those of the in vitro experiment, are presented and discussed. The paper also describes a few experiments (varying several parameter values) to illustrate and detail the approach.
Wydawca

Rocznik
Strony
111--132
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Bakkum, D. G., Chao, Z. C., Potter, S. M.: Spatio-temporal electrical stimuli shape behaviour of an embodied cortical network in a goal-directed learning task, Journal of Neural Engineering, vol. 5, no. 3,2008, 310-323.
  • [2] Banker, G., Goslin, K.: Culturing nerve cells, 2nd ed., Cambridge, Mass.: MIT Press, 1998.
  • [3] Bonzano, L. et al.: Modulation of electrophysiological activity in neural networks: towards a bioartificial living system, Handbook of Neural Engineering, Piscataway, NJ:Wiley-Interscience, 2007, 29-40.
  • [4] Brette, R. et al.: Simulation of networks of spiking neurons: a review of tools and strategies Journal of Computational Neuroscience, vol. 23, 2007, 349-398.
  • [5] Bower, J. M., Beeman, D.: The book of GENESIS: Exploring realistic neural models with the General Neural simulation System, second ed., New York: Springer, 1998.
  • [6] Buzsaki, G., Costas, A. A., Koch, C.: The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes, Nature Reviews - Neuroscience, vol. 13, no. 6, 2012, pp. 407-420.
  • [7] Carnevale,N. T., Hines, M. L.: The NEURON Book, Cambridge, UK, Cambridge University Press, 2009.
  • [8] Chiappalone, M., Vato, A., Tedesco, M., Marcoli, M., David, F., Martinoia, S.: Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications, Biosensors and Bioelectronics, vol. 18, no. 5-6, 2003, 627-624.
  • [9] http://www.lsm.tugraz.at/csim/
  • [10] http://www.ini.uzh.ch/ amw/seco/cx3d/
  • [11] Djurfeldt, M., Johansson, C., Ekeberg, O., Rehn, M., Lundqvist, M., Lansner, A.: Massively parallel simulation of brain-scale neuronal network models, Technical Report TRITA-NA-P0513, Stockholm: School of Computer Science and Communication, 2005.
  • [12] Drewes R., Zou Q., Goodman, P. H.: Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator, Frontiers in Neuroinformatics, vol. 3, article 16, 2009, 1-10.
  • [13] Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students, Philadelphia: SIAM, 2004.
  • [14] Escola, R., Pouzat, C., Chaffiol, A., Yvert, B., Bagnin, I. E., Guillemaud, R.: SIMONE: A realistic neural network simulator to reproduce MEA-based recordings, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.16, no. 2, 2008, 149-160.
  • [15] Eytan, D., Brenner, N., Marom, S.: Selective adaptation in networks of cortical neurons, The Journal of Neuroscience, vol. 23, no. 28, 2003, 9349-9356.
  • [16] Gold, C.,Henze, D.A., Koch, C., Buzsaki, G.: On the origin of the extracellular action potential waveform: a modeling study, Journal of Neurophysiology, vol. 95, no. 5, 2006, 3113-3128.
  • [17] Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina, Neuron, vol. 65, no. 2, 2010, 15-164.
  • [18] Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd. ed., Upper Saddle River, NJ: Prentice Hall, 2008.
  • [19] Gross, G. W., Reiske, E., Kreutzberg, G.W., Mayer, A.: A new fixed-array multimicroelectrode system designed for long-term recording of extracellular single unit activity in-vitro, Neuroscience Letter, vol. 6, 1977, 101-105.
  • [20] Gross, G. W., Pancrazio, K. V. : Neural Network Biosensors, In: Smart Biosensor Technology, G.K. Knopf and A. S. Baudry (eds.) Advances in Network Electrophysiology using Multi-Electrode Arrays, Springer, 193-214.
  • [21] Gross, G. W.: Multielectrode arrays, Scholarpedia, 6(3):5749, 2011.
  • [22] ImageJ: Official website of ImageJplatform, available at < rsbweb.nih.gov/ij/ >, accessed on 6th March 2012.
  • [23] Izhikevich, E. M.: Neural excitability, spiking and bursting, International Journal of Bifurcation and Chaos, vol. 10, no. 6, 2000, 1171-1266.
  • [24] Izhikevich, E. M.: Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol. 14, no.6, 2003, 1569-1572.
  • [25] Izhikevich, E. M.: Dynamical systems in neuroscience - the geometry of excitability and bursting, Cambridge, MA: MIT Press, 2007.
  • [26] Klisch, C., Inyushkin, A., Mordel, J., Karnas, D., Pvet, P., Meissl, H.: Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro, European Journal ofNeuroscience, vol. 30, 2009, 65-75.
  • [27] Mari, J. F., Saito, J. H., Destro-Filho, J. B., Martinoia, S.: Three-dimensional visualization of rat hippocampal cultured neurons based on images of multielectrode arrays (MEA), Proceedings of Sixth International Workshop on Computational Systems Biology (WCSB 2009), vol. 1, 2009, 115-118.
  • [28] McCarthy, P. T., Madangopal, R., Otto, K. J.: Titanium-based multi-channel micro-electrode array for recording neural signals, Proceedings of 31st. Annual International Conference of the IEEE EMBS, 2009, 2062-2065.
  • [29] Meister, M., Pine, J., Baylor, D. A.: Multielectrode recording from the vertebrate retina, Invest. Ophthalmol. Vis., vol.30 (suppl.), 1989, 68.
  • [30] Meister, M., Wong, R. O., Baylor, D. A., Schatz, C. J.: Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina, Science, vol. 252, 1991, 939-943.
  • [31] Meister, M., Pine, J., Baylor, D. A.: Multi-neural signals from the retina acquisition and analysis, Neurosci. Meth., vol.51, 1994, 95-106.
  • [32] Morefield, S. I., Keefer, E. W., Chapman, K. D.: Drug evaluations using neuronal networks cultured on microelectrode arrays, Biosensors and Bioelectronics, vol.15, 2000, nos. 7-8, 383-396.
  • [33] http://www.nest-initiative.org
  • [34] http://netmorph.org/
  • [35] Novellino, A., Chiappalone, M., Vato, A., Bove, M., Tedesco, M. B., Martinoia, S.: Behaviors from an electrically stimulated spinal cord neuronal network cultured on microelectrode arrays, Neurocomputing, vols. 52-54, 2003, 661-669.
  • [36] Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes, Journal of Neuroscience Methodology, vol. 2, 1980, 19-31.
  • [37] Rochel, O., Martinez, D.: An event-driven framework for the simulation of networks of spiking neurons, Proceedings of the 11th European Symposium on Artificial Neural Networks, Bruges, 2003, 295-300.
  • [38] Ruaro, M. E., Bonifazi, P., Torre, V.: Toward the neurocomputer: image processing, and pattern recognition with neuronal cultures, IEEE Transaction on Biomedical Engineering, vol. 52, no. 3, 2005, 371-383.
  • [39] Shahaf, G., Marom, S.: Learning in networks of cortical neurons, The Journal of Neuroscience, vol. 21, no. 22, 2001, 8782-8788.
  • [40] Systems, M.C.: Innovations in Electrophysiology, Multi Channel Systems. Available on www.multichannelsystems.com, accessed on 8th March 2012.
  • [41] Thomas, C. A., Springer, P. A., Loeb, G. W., Berwald-Netter, Y., Okun, L. M.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells, Experimental Cell Research, vol. 74, 1972, 61-66.
  • [42] van Pelt, J., Wolters, P. S., Corner, M. A., Rutten, W.L., Ramakers, G. J.: Long-term characterization of firing dynamics of spontaneous bursts in clutured neural networks, IEEE Transactions on Biomedical Engineering, vol. 51, no. 11, 2004, 2051-2056.
  • [43] Wagenaar, D. A., Pine, J., Potter, S. M.: Searching for plasticity in dissociated cortical cultures on multielectrode arrays, Journal of Negative Results in BioMedicine, 2006, 5:16.
  • [44] Wheeler, B. C., Novak, J. L.: Current source density estimation using microelectrode array data from the hippocampal slice preparation, IEEE Transactions on Biomedical Engineering, vol. 33, 1986, 1204-1212.
  • [45] Zitova, B., Flusser, J.: Image registration methods: a survey, Image and Vision Computing, vol. 21, 2003, 977-1000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a0b1f786-f929-4932-84c1-82f2604a21b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.