Warianty tytułu
Języki publikacji
Abstrakty
In this note, we give a self-contained proof of the following classification (up to conjugation) of finite subgroups of GSpn(Fl) containing a nontrivial transvection for l ≥ 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Spn(Fl). This result is for instance useful for proving ‘big image’ results for symplectic Galois representations.
Czasopismo
Rocznik
Tom
Strony
129--148
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Université Du Luxembourg Faculté Des Sciences, De La Technologie Et De La Communication 6, Rue Richard Coudenhove-Kalergi L-1359 Luxembourg, Luxembourg, sara.ariasdereyna@uni.lu
autor
- Departament D’àlgebra I Geometria Facultat De Matemàtiques Universitat De Barcelona Gran Via De Les Corts Catalanes, 585 08007 Barcelona, Spain, ldieulefait@ub.edu
autor
- Université Du Luxembourg Faculté Des Sciences, De La Technologie Et De La Communication 6, Rue Richard Coudenhove-Kalergi L-1359 Luxembourg, Luxembourg, gabor.wiese@uni.lu
Bibliografia
- [1] S. Arias-de-Reyna, L. Dieulefait, S. W. Shin, G. Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties, Math. Ann. 361(3) (2015), 909–925.
- [2] S. Arias-de-Reyna, L. Dieulefait, G. Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem I. Images of projective representations, Trans. Amer. Math. Soc., in press, 2016.
- [3] S. Arias-de-Reyna, L. Dieulefait, G. Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem II. Transvections and huge image, Pacific J. Math. 281(1) (2016), 1–16.
- [4] E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York-London, 1957.
- [5] L. E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, with an introduction by W. Magnus, Dover Publications Inc., New York, 1958.
- [6] W. M. Kantor, Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc. 248 (1979), 347–379.
- [7] S. Z. Li, J. G. Zha, On certain classes of maximal subgroups in PSp(2n; F), Sci. Sinica Ser. A 25 (1982), 1250–1257.
- [8] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), 207–242.
- [9] H. H. Mitchell, The subgroups of the quaternary Abelian linear group, Trans. Amer. Math. Soc. 15 (1914), 379–396.
- [10] A. Wagner, Groups generated by elations, Abh. Math. Sem. Univ. Hamburg 41 (1974),190–205.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a06f89b2-6209-4466-a96f-997949e1993e