Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 28, Fasc. 2 | 281--304
Tytuł artykułu

Small deviation of subordinated processes over compact sets

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let A =(A(t)t≥0 be a subordinator. Given a compact set K ⊂[(0;∞) we prove two-sided estimates for the covering numbers of the random set {A(t) : t ∈ K} which depend on the Laplace exponent Φ of A and on the covering numbers of K. This extends former results in the case K = [0; 1]. Using this we find the behavior of the small deviation probabilities for subordinated processes(WH(A(t))tЄK, whereWH is a fractional Brownian motion with Hurst index 0 < H < 1. The results are valid in the quenched as well as in the annealed case. In particular, those questions are investigated for Gamma processes. Here some surprising new phenomena appear. As application of the general results we find the behavior of log P(suptЄK |Zα(t)| < ε) as ε→ 0 for the α-stable Lévy motion Zα. For example, if K is a self-similar set with Hausdorff dimension D > 0, then this behavior is of order −ε−αD in complete accordance with the Gaussian case α = 2.
Wydawca

Rocznik
Strony
281--304
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
Bibliografia
  • [1] T. W. Anderson, The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6 (1955), pp. 170-176.
  • [2] F. Aurzada, Small deviations for stable processes via compactness properties of the parameter set, Statist. Probab. Lett. 78 (2008), pp. 557-581.
  • [3] F. Aurzada and M. A. Lifshits, Small deviation probability via chaining, Stochastic Process. Appl. (2008), to appear.
  • [4] J. Bertoin, Lévy Processes, Cambridge Univ. Press, Cambridge 1996.
  • [5] J. Bertoin, Subordinators: examples and applications; in: Ecole d’Eté St.-Flour 1997, Lecture Notes in Math. No. 1717, Springer, 1999, pp. 1-91.
  • [6] S. P. Lalley, The packing and covering functions of some self-similar fractals, Indiana Univ. Math. J. 37 (1988), pp. 699-709.
  • [7] M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Lecture Notes in Math. No. 1648, Springer, 1996, pp. 165-294.
  • [8] W. V. Li and W. Linde, Existence of small ball constants for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), pp. 1329-1334.
  • [9] M. A. Lifshits, W. Linde and Z. Shi, Small deviations for Riemann-Liouville processes in Lq-spaces with respect to fractal measures, Proc. London Math. Soc. 92 (2006), pp. 224-250.
  • [10] M. A. Lifshits, W. Linde and Z. Shi, Small deviations of Gaussian random fields in Lq-spaces, Electron. J. Probab. 11 (2006), pp. 1204-1233.
  • [11] M. A. Lifshits and T. Simon, Small deviations for fractional stable processes, Ann. Inst. H. Poincaré 41 (2005), pp. 725-752.
  • [12] W. Linde, Kolmogorov numbers of Riemann-Liouville operators over small sets and applications to Gaussian processes, J. Approx. Theory 128 (2004), pp. 207-233.
  • [13] W. Linde and Z. Shi, Evaluating the small deviation probabilities for subordinated Lévy processes, Stochastic Process. Appl. 113 (2004), pp. 273-287.
  • [14] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York 1994.
  • [15] M. Talagrand, New Gaussian estimates for enlarged balls, Geom. Funct. Anal. 3 (1993), pp. 502-526.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a0257169-40ef-4430-be01-1059b2d5058e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.