Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 3 | 133--144
Tytuł artykułu

Gage Repeatability and Reproducibility Analysis of Coordinate Measurements of a Cutting Tool

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research concerning the analysis of the possibility of the innovative application of the LineScan non-contact laser measuring probe controlled by the ACCURA II coordinate measuring machine in the field of measurements of a selected cutting tool. In the study, the angle of a round cutting insert was measured. The influence of the selected elements of a measurement strategy i.e., the scanning speed v, the resolution k, and the number of measurement paths w on the repeatability of measurements and the value of the insert’s angle was determined. In both cases, the number of paths had the greatest impact. The best repeatability was obtained for the smallest distance between points (k = 0.1 mm) and the largest number of paths (w =10). For those measurement strategies, which differed in the scanning speed (1 and 3 mm/s), the detailed GR&R analyses were carried out by using the ANOVA and EMP methods. For strategies with the scanning speeds of 1 and 3 mm/s, the variance of the measuring system was 0.9% and 0.5% of the total variance, respectively. However, these differences in repeatability were not statistically significant. It has been shown that the selected methodologies of measurements and measurement data processing ensure good measurement repeatability of the selected geometrical feature of a cutting tool.
Wydawca

Rocznik
Strony
133--144
Opis fizyczny
Bibliogr. 31 oz., fig., tab.
Twórcy
  • Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland, b.jamula@prz.edu.pl
autor
  • Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland, abazan@prz.edu.pl
  • Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland, marmag@prz.edu.pl
Bibliografia
  • 1. Knowles G., Antony J., Vickers G. A Practical Methodology for Analysing and Improving the Measurement System. Quality Assurance 2000; 8(2): 59–75.
  • 2. Cepova L., Kovacikova A., Cep R. et al. Measurement System Analyses – Gauge Repeatability and Reproducibility Methods. Measurement Science Review 2018; 18(1): 20–27.
  • 3. Segreto T., Simeone A., Teti R. Multiple sensor monitoring in nickel alloy turning for tool wear assessment via sensor fusion. Procedia CIRP 2013; 12: 85–90.
  • 4. Żyłka Ł., Burek J., Mazur D. Diagnostic of peripheral longitudinal grinding by using acoustic emissionsignal. Advances in Production Engineering & Management 2017, 12(3): 221–232.
  • 5. Yang Z., Liu L., Peng K. et al. Monitoring Method of High-speed Tool Wear Level based on Machine Vision. International Journal of Signal Processing, Image Processing and Pattern Recognition 2017; 10(6): 23–38.
  • 6. Al-Refaie A., Bata N. Evaluating measurement and process capabilities by GR& R with four quality measures. Measurement 2010; 43(6): 842–851.
  • 7. Magdziak M. Estimating Time of Coordinate Measurements Based on the Adopted Measurement Strategy. Sensors 2022; 22(19): 7310.
  • 8. Puertas I., Luis Pérez C. J., Salcedo D. et al. Precision study of a coordinate measuring machine using several contact probes. Procedia Engineering 2013; 63: 547–555.
  • 9. Tóth T., Živčák J. A comparison of the outputs of 3D scanners. Procedia Engineering 2014; 69: 393–401.
  • 10. Altinisik A., Bolova E. A comparison of off-line laser scanning measurement capability with coordinate measuring machines. Measurement: Journal of the International Measurement Confederation 2021; 168: 108228.
  • 11. Podulka P. Selection of reference plane by the least squares fitting methods. Advances in Science and Technology Research Journal 2016; 10(30): 164–175.
  • 12. Magdziak M., Ratnayake R. M. C. Investigation of best parameters’ combinations for coordinate measuring technique. Procedia CIRP 2018; 78: 213–218.
  • 13. Wang X., Xian J., Yang Y. et al. Use of coordinate measuring machine to measure circular aperturę complex optical surface. Measurement 2017; 100: 1–6.
  • 14. Burdick R. K., Borror C. M., Montgomery D. C. A review of methods for measurement systems capability analysis. Journal of Quality Technology 2003; 35(4): 342–354.
  • 15. Montgomery D.C. Introduction to Statistical Quality Control. Wiley, 2019.
  • 16. Kawalec M. The analysis of repeatability reproducibility of the measurement system applied to sleeve using the R&R methodology. Global Existential Risks 2017: 92–99.
  • 17. He S-G., Wang G. A., Cook D. F. Multivariate measurement system analysis in multisite testing: An online technique using principal component analysis. Expert Systems with Applications 2011; 38(12): 14602–14608. 18. Zanobini A., Sereni B., Catelani M., Ciani L. Repeatability and Reproducibility techniques for the analysis of measurement systems. Measurement 2016; 86: 125–132.
  • 19. Montgomery D. C., Rugner G. C. Gauge Capability Analysis and designed experiments. Part II: Experimental design models and variance component estimation. Quality Engineering 1993; 6(2): 289–305.
  • 20. Montgomery D C, Rugner G C. Gauge Capability and designed experiments. Part I. Basic Methods. Quality Engineering 1993; 6(1): 115–135.
  • 21. Pan J. Determination of the optimal allocation of parameters for gauge repeatability and reproducibility study. International Journal of Quality & Reliability Management 2004; 21(6): 672–682.
  • 22. AIAG. Measurement systems analysis – reference manual. 4th ed. American Society for Quality Control, 2010.
  • 23. Mikulová P., Plura J. Detailed Analysis of GRR Study Results and their Visualization. Quality Production Improvement - QPI 2019; 1(1): 479–486.
  • 24. Wheeler D. J. EMP III - Evaluating the Measurement Process. SPC Press, 2006.
  • 25. Westphal G. Centro tecnológivo de Joinville MSA e VDA 5: Uma metodologia integrada para análise. 2017.
  • 26. Gdula M. Empirical Models for Surface Roughness and Topography in 5-Axis Milling Based on Analysis of Lead Angle and Curvature Radius of Sculptured Surfaces. Metals 2020; 10(7): 932.
  • 27. Gdula M., Mrówka-Nowotnik G. Analysis of tool wear, chip and machined surface morphology in multi-axis milling process of Ni-based superalloy using the torus milling cutter. Wear 2023, 520–521: 204652.
  • 28. Bazan A., Magdziak M., Jamuła B. Analysis of results of non-contact coordinate measurement of a cutting tool applied for mould machining. Archives of Foundry Engineering 2022; 22(4): 121–127.
  • 29. Hong C-W. Using the Taguchi method for effective market segmentation. Expert Systems with Applications 2012; 39(5): 5451–5459.
  • 30. Tang K-Z., Tan K-K., Lee T-H. Taguchi Method Using Intelligent Techniques. In: Kahraman, C., Yanik, S. (eds) Intelligent Decision Making in Quality Management. Intelligent Systems Reference Library. Springer, 2016.
  • 31. Wludyka P., Sa P. A robust I -sample analysis of means type randomization test for variances for unbalanced designs. Journal of Statistical Computation and Simulation 2004; 74(10): 701–726.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9ffa26b3-6a9b-4c27-85a0-30d10833e294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.