Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 98, nr 2 | 182--186
Tytuł artykułu

Improving the quality of products created by additive technologies based on argon-arc welding

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Poprawa jakości produktów tworzonych przez technologie przyrostowe oparte na spawaniu łukiem argonowym
Języki publikacji
EN
Abstrakty
EN
The article considers the features of additive prototyping with the use of additive material by means of high-energy heating. Mathematical modeling of the process of surfacing of filler metal is performed. A significant influence of the feed and electrical characteristics of the arc on the parameters of the surfacing roller was revealed. Regression equations of influence of parameters of mechanized argon-arc welding on the shape of the seam and parameters of accuracy of the obtained product are determined.
PL
W artykule omówiono cechy prototypowania przyrostowego z wykorzystaniem przyrostu materiału za pomocą nagrzewania wysokoenergetycznego. Przeprowadzane jest matematyczne modelowanie procesu napawania spoiwa. Wykazano istotny wpływ parametrów posuwowych i elektrycznych łuku na parametry walca napawającego. Wyznaczono równania regresji wpływu parametrów zmechanizowanego spawania argonem na kształt spoiny oraz parametry dokładności otrzymanego produktu.
Wydawca

Rocznik
Strony
182--186
Opis fizyczny
Bibliogr. 14 poz.,rys.
Twórcy
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremohy 37, Kyiv, Ukraine, 03056, salenko2006@ukr.net
  • Kremenchuk Mykhailo Ostrohradskyi National University, Department of branch mechanical engineering, Pershotravneva str. 20, Kremenchuk, Ukraine, 39600, chenchevaolga@gmail.com
  • Kremenchuk Mykhailo Ostrohradskyi National University, Department of branch mechanical engineering, Pershotravneva str. 20, Kremenchuk, Ukraine, 39600, schetynin_viktor@gmail.com
  • Kremenchuk Mykhailo Ostrohradskyi National University, Department of branch mechanical engineering, Pershotravneva str. 20, Kremenchuk, Ukraine, 39600, mzagirn@kdu.edu.ua
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremohy 37, Kyiv, Ukraine, 03056, kstnkaa@gmail.com
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremohy 37, Kyiv, Ukraine, 03056, kstnkaa@gmail.com
Bibliografia
  • [1] M. Zagirnyak, V. Zagirnyak, D. Moloshtan, V. Drahobetskyi, A. Shapoval, A search for technologies implementing a high fighting efficiency of the multilayered elements of military equipment, Eastern-European Journal of Enterprise Technologies, vol. 6, no. 1-102 (2019), 33–40.
  • [2] J. G. Zhou, Z. Y. He, A new rapid tooling technique and its special binder study, Rapid Prototyping J., 5 (1999), No. 2, 82–88.
  • [3] M.V.Zagirnyak,V.V.Drahobetskyi,Newmethodsofobtaining materials and structures for light armor protection, ICMT 2015 - International Conference on Military Technologies 2015, 2015.
  • [4] S.N.A.Majid,M.R.Alkahari,F.R.Ramli,S.Maidin,T.C.Fai, and M. N. Sudin, Influence of Integrated Pressing during Fused Filament Fabrication on Tensile Strength and Porosity, J. of Mechanical Engineering, 2 (2017), 185–195.
  • [5] M. A. Nazan, F. R. Ramli, M. R. Alkahari, M. N. Sudin, and M. A. Abdullah, Optimization of warping deformation in open source 3D printer using response surface method, Proc. of Mechanical Engineering Research Day, 2016, 71–72.
  • [6] V. Sharma and S. Singh, Rapid Prototyping: Process Advantage, Comparison and Application, Int. J. of Computational Intelligence Research, 12 (2016), No. 1, 55–61.
  • [7] D. Nimawat and M. Meghvanshi, Using Rapid Prototyping Technology in Mechanical Scale Models, Int. J. of Engineering Research and Applications, 2 (2012), No. 2, 215–219.
  • [8] V. N. Sidorets, A. M. Zhernosekov, I. V. Pentegov, O. I. Petrienko, Features of electrode melting during arc welding of steels. Electrical engineering and electrical engineering. 2 (2013), 34–37.
  • [9] M. R. Alkahari, T. Furumoto, T. Ueda, A. Hosokawa, Melt Pool and Single Track Formation in Selective Laser Sintering/Selective Laser Melting, Advanced Materials Research, 933 (2014), 196–201.
  • [10] A. Salenko, P. Melnychuk, E. Lashko, O. Chencheva, O. Titarenko, I. Derevianko, A. Samusenko, Ensuring the functional properties of responsible structural plastic elements by means of 3–D printing, Eastern–European Journal of Enterprise Technologies, 5 (2020), Iss. 107, 18–28.
  • [11] I. V. Pentegov, V.N. Sidorets, O.I. Petrienko, A.M. Zhernosekov To the analytical determination of the melting coefficient in arc welding of steels. Visnyk CHDTU, 2 (2012), No. (57), 89–96.
  • [12] S. Jhavar, N. K. Jain, and C. P. Paul, Developement of microplasma transferred arc (μ–PTA) wire deposition process for additive manufacturing applications, J. of Materials Processing Technology, 214 (2014), No.5, 1102–1110.
  • [13] J. Xiong, G. J. Zhang, and W. H. Zhang, Forming appearance analysis in multi–layer single–pass GMAW–based additive manufacturing, The Int. J. of Advanced Manufacturing Technology, 80 (2015), 1767–1776.
  • [14] I. Lutsenko, E. Fomovskaya, Identification of target system operations: The practice of determining the optimal control, Eastern-European Journal of Enterprise Technologies, vol. 6, no. 2 (2016), 30-36.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9ff98a3a-ff6d-412c-b64d-82ef487b7a46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.