Warianty tytułu
Języki publikacji
Abstrakty
The structural, electronic and optical properties of BexZn1−xO alloys were studied using the density functional theory and Hubbard-U method. Uo,p = 10.2 eV for O 2p and UZn,d = 1.4 eV for Zn 3d were adopted as the Hubbard U values. For BexZn1−xO alloys, the lattice constants a and c decrease linearly as Be concentration increases, the bandgap increases with a large bowing parameter of 6.95 eV, the formation enthalpies have the maximum value with Be concentration at 0.625, corresponding to the possible Be concentration to form phase separation. These calculations comply well with the experimental and other theoretical results. Furthermore, optical properties, such as dielectric function ∈(ω), reflectivity R(ω), absorption coefficient α(ω), were calculated and discussed for BexZn1−xO alloys with the incident photon energy ranging from 0 eV to 30 eV.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
629--636
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China, depingxiong@gdut.edu.cn
autor
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China, zhoushl@zjut.edu.cn
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China
Bibliografia
- [1] LEI P.H., DING M.J., LEE Y.C., CHUNG M.J., J. Alloy. Compd., 509 (2011), 6152.
- [2] ZHANG Z.Z., WEI Z.P., LU Y.M., SHEN D.Z., YAO B., LI B.H., J. Cryst. Growth, 301 (2007), 362.
- [3] ZHANG Q., DANDENEAU C.S., ZHOU X., CAO G., Adv. Mater., 21 (2009), 4087.
- [4] WU.F, QIAO QIAO. Q.Q. BAHRAMI B., CHEN K., PATHAK R., MABROUK R., TONG Y.H., Appl. Surf. Sci., 456(2018), 124.
- [5] HWANG D.K., KANG S.H., LIM J.H., YANG E.J., OH Y.J., YANG J.H., PARK S.J., Appl. Phys. Lett., 86 (2005), 222101.
- [6] ZHU H., SHAN C.X., LI B.H., ZHANG Z.Z., YAO B., SHEN D.Z., Appl. Phys. Lett., 99 (2011), 101110.
- [7] WEN J., HU Y.H., ZHU K.J., LI Y.F., SONG J.Z., Curr. Appl. Phys., 14 (2014), 359.
- [8] BIAVAN N.L., HUNGUES M., MONTES BAJO M., TAMAYO ARRIOLA J., JOLLIVET A.A., LEFEBVRE D., Appl. Phys. Lett., 111 (2017), 231903.
- [9] BAJO M.M., TAMAYO-ARRIOLA J., BIAVAN N.L., ULLOA J.M., VENNEGUES P., LEFEBVRE D., Phys. Rev. Appl., 10 (2018), 034022.
- [10] QIU M.X., ZHANG Y.Z., YE Z.Z., HE H.P, TANG H.P., GU X.Q., ZHU L.P., ZHAO B.H., J. Phys. D:Appl. Phys., 40 (2007), 3229.
- [11] POLYAKOV A.Y., SMIMOV N.B., GOVORKOVA.V., KOZHUKHOVA E.A., BELOQOROKHOV A.I.,MARKOV A.V., KIM H.S., NORTON D.P., PEARTON S.J., J. Electrochem. Soc., 154 (2007), 825.
- [12] THANGAVEL R., RAJAGOPALAN M., KUMAR J., Solid State Commun., 137 (2006), 507.
- [13] HU Y.H., CAI B, HU Z.Y., LIU Y.L., ZHANG S.L., ZENG H.B., Curr. Appl. Phys., 15 (2015), 423.
- [14] BAI L.N., ZHENG B.J., LIAN J.S., JIANG Q., Solid State Sci., 14 (2012), 698.
- [15] GOWRISHANKAR S., BALAKRISHNAN L., GOPALAKRISHNAN N., Ceram. Int., 40 (2014), 2135.
- [16] XIONG D.P., TANG X.G., ZHAO W.R., LIU Q.X., WANG Y. H., ZHOU S.L., Vacuum, 89 (2013), 254.
- [17] DU X.L., MEI Z.X., LIU Z.L., GUO Y., ZHANG T.C., Adv. Mater., 21(2009), 4625.
- [18] RYU Y.R., LEE T.S., WHITE H.W., J. Cryst. Growth, 261 (2004), 502.
- [19] RYU Y.R., LEE T.S., LUBGUBAN J.A., WHITE H.W., Appl. Phys. Lett., 88 (2006), 241108.
- [20] CHEN M., ZHU Y., SU L., Appl. Phys. Lett., 102 (2013), 202103.
- [21] GODBY R.W., SCHLUTER M., SHAM L.J., Phys. Rev. B, 36 (1987), 6497.
- [22] DING S.F., FAN G.H., LI S.T., CHEN K., XIAO B., Phys. B, 394 (2007), 127.
- [23] MA X., WU Y., LU Y., XU J., WANG Y., ZHU Y., J. Phys. Chem. C, 115 (2011), 16963.
- [24] MA X., LU B., LI D., SHI R., PAN C., ZHU Y., J. Phys. Chem. C, 115 (2011), 4680.
- [25] SEGALL M.D., LINDAN P.J.D., PROBERT M.J., PICKARD C.J., HASNIP P.J., CLARK S.J., PAYNE M.C., J. Phys. Condens. Matter, 14 (2002), 2717.
- [26] XIONG D.P., HE M., WANG Q., FENG Z.Y., Adv. Soc. Sci.-Ed. Hum. Res., 130 (2017), 585.
- [27] BAI L.N., ZHENG B.J., LIAN J.S., JIANG Q., Solid State Sci., 14 (2012), 698.
- [28] SHAO G., J. Phys. Chem. C, 113 (2009), 6800.
- [29] SHEETZ R.M., PONOMAREVA I., RICHTER E., ANDRIOTIS A.N., MENON M., Phys. Rev. B, 80 (2009), 195314.
- [30] RYU Y.R., LEE T.S., LUBGUBAN J.A., COMMANA.B., WHITE H.W., Appl. Phys. Lett., 88 (2006), 052103.
- [31] PARK D.S., KRUPSKI A., SANCHEZ A.M., CHOI C.J.,YI M.S., LEE H.H., MCCONVILLE C.F., Appl. Phys.Lett., 104 (2014), 141902.
- [32] KHOSHMAN J.M., INGRAM D.C., KORDESCH M.E., Appl. Phys. Lett., 92 (2008), 091902.
- [33] FAN X.F., ZHU Z.X., ONG Y.S., LU Y.M., SHENZ.X., KUO J.L., Appl. Phys. Lett., 91 (2007), 121121
- [34] YU J.H., KIM J.H., YANG H.J., KIM T.S., JEONGT.S., YOUN C.J., HONG K.J., J. Mater. Sci., 47(2012), 5529.
- [35] PAIVA R.D., ALVES J.L.A., NOGUEIRA R.A., Mater. Sci. Eng. B, 93 (2002), 2.
- [36] LI M.K., LUO M.H., ZHU J.K., LONG D.B., MIAOL.S., HE Y.B., J. Appl. Phys., 121 (2017), 205101.
- [37] GARCIA J.C., SCOLFARO L.M.R., LINO A.T., FREIRE V.N., FARIAS G.A., SILVA C.C., LEITE ALVES H.W., RODRIGUES S.C.P., DASILVA E.F., J. Appl. Phys., 100 (2006), 104103.
- [38] SHEN X.C., Science Press, Beijing, 1992, p. 24.
- [39] YU Y.H., LEE S.C., YANG C.S., CHOI C.K., JUNG W.K., Phys. Soc., 42 (2003), 682.
- [40] LEI X., WONG C.H., BUNTOV E.A., ZATSEPIN A.F., ZHAO G.J., BOUKHVALOV D.W., Optik, 178 (2019), 691.
- [41] SU L.X., ZHU Y., ZHANG Q.L., CHEN M.M., WU T.Z., GUI X.C., Appl. Surf. Sci., 274 (2013), 341.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9fb85d6a-05db-474d-b408-087779ccd480