Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e211, 2023
Tytuł artykułu

Ways to increase the productivity of L-PBF processes

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main limitations of additive manufacturing (AM) technologies consists in the relatively low build rate. Low productivity discourages companies from investing in AM machines, thus limiting the market of additive technologies. Machine manufacturers have introduced new solutions to their designs to increase the build rate, some of them are described in this paper. However, design improvements are not the only method to accelerate the process. The paper specifies factors that influence the build rate in the laser powder bed fusion process and provides an analytical assessment and comparison of the significance of how they affect its productivity. The influence that a change in selected parameters has on the process and the influence of multi-laser systems on its productivity are analysed in terms of the melted material quality. The processes from which the data for analysis were obtained were carried out on an SLM 280 machine with single- and dual-laser versions as well as on an SLM 500 with four lasers. Two types of samples, solid and thin-walled, both of the same volume, were tested. The data under analysis were the process times for both geometries, manufactured with different sets of parameters from the adopted range. Processing times were analysed to determine the main effects and interaction effects for extreme values of a given parameter. The height of the melted powder layer had the greatest influence on the build rate, which turned out to be greater even than the application of a two-laser system.
Wydawca

Rocznik
Strony
art. no. e211, 2023
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Wadim Plast Sp. z o. o., Reguły, Poland, marcin.kasprowicz@wadim.com.pl
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Wadim Plast Sp. z o. o., Reguły, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • 1. Yuan S, Li J, Yao X, Zhu J, Gu X, Gao T, Xu Y, Zhang W. Intelligent optimization system for powder bed fusion of processable thermoplastics. Addit Manuf. 2020. https://doi.org/10.1016/j. addma.2020.101182.
  • 2. Xiong Y, Tang Y, Zhou Q, Ma Y, Rosen DW (2022) Intelligent additive manufacturing and design: state of the art and future perspectives. Addit Manuf 59:103139. https://doi.org/10.1016/J. ADDMA.2022.103139.
  • 3. Laskowska D, Mitura K, Ziółkowska E, Bałasz B (2021) Addi tive manufacturing methods, materials and medical applica tions-the review. J Mech Energy Eng 5(45):15–30. https://doi. org/10.30464/jmee.2021.5.1.15 (Website: Jmee.Tu.Koszalin. Pl ISSN).
  • 4. Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process 57:978–1003. https://doi.org/10.1016/j.jmapro.2020.07. 025 (Elsevier Ltd).
  • 5. Çam G. Prospects of producing aluminum parts by wire arc addi tive manufacturing (WAAM). Mater Today Proc. 2022;62:77–85. https://doi.org/10.1016/j.matpr.2022.02.137.
  • 6. Cao Y, Zhang Y, Ming W, He W, Ma J (2023) Review: the metal additive-manufacturing technology of the ultrasonic-assisted wire and-arc additive-manufacturing process. In: Metals, vol 13, no 2. MDPI. https://doi.org/10.3390/met13020398.
  • 7. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018. https://doi.org/10.1016/j.mattod.2017.07.001.
  • 8. Flores I, Kretzschmar N, Azman AH, Chekurov S, Pedersen DB, Chaudhuri A. Implications of lattice structures on economics and productivity of metal powder bed fusion. Addit Manuf. 2020. https://doi.org/10.1016/j.addma.2019.100947.
  • 9. Khorasani A, Gibson I, Veetil JK, Ghasemi AH. A review of tech nological improvements in laser-based powder bed fusion of metal printers. Int J Adv Manuf Technol. 2020. https://doi.org/10.1007/ s00170-020-05361-3.
  • 10. Pfaff A, Jäcklein M, Schlager M, Harwick W, Hoschke K, Balle F. An empirical approach for the development of process parameters for laser powder bed fusion. Materials. 2020. https://doi.org/10. 3390/ma13235400.
  • 11. Bosio F, Aversa A, Lorusso M, Marola S, Gianoglio D, Battezzati L, Fino P, Manfredi D, Lombardi M. A time-saving and cost effective method to process alloys by laser powder bed fusion. Mater Des. 2019. https://doi.org/10.1016/j.matdes.2019.107949.
  • 12. Pawlak A, Rosienkiewicz M, Chlebus E. Design of experi ments approach in AZ31 powder selective laser melting process optimization. Arch Civ Mech Eng. 2017. https://doi.org/10.1016/j. acme.2016.07.007.
  • 13. Herzog D, Bartsch K, Bossen B. Productivity optimization of laser powder bed fusion by hot isostatic pressing. Addit Manuf. 2020. https://doi.org/10.1016/j.addma.2020.101494.
  • 14. Sow MC, De Terris T, Castelnau O, Hamouche Z, Coste F, Fabbro R, Peyre P. Influence of beam diameter on laser powder bed fusion (L-PBF) process. Addit Manuf. 2020. https://doi.org/10.1016/j. addma.2020.101532.
  • 15. Leicht A, Fischer M, Klement U, Nyborg L, Hryha E. Increasing the productivity of laser powder bed fusion for stainless steel 316L through increased layer thickness. J Mater Eng Perform. 2020. https://doi.org/10.1007/s11665-020-05334-3.
  • 16. de Formanoir C, Paggi U, Colebrants T, Thijs L, Li G, Vanmeen sel K, Van Hooreweder B. Increasing the productivity of laser powder bed fusion: influence of the hull-bulk strategy on part quality, microstructure and mechanical performance of Ti–6Al– 4V. Addit Manuf. 2020. https://doi.org/10.1016/j.addma.2020. 101129.
  • 17. Schwarze D, Wiesner A, Hermann A (2014) Powder application apparatus and method of operating a powder application appara tus. European Patent no. EP2818305B1.
  • 18. Vaes MHE, Van Haendel RPA, Magielsen MJ, Webb ChP, Kersten DAJ, Wintermans J, Vermeer AJPM, Peeters FWJ (2016) Apara tus for producing an object by means of additive manufacturing. World Patent no. 2016085334A3.
  • 19. Nguyen QB, Luu DN, Nai SML, Zhu Z, Chen Z, Wei J. The role of powder layer thickness on the quality of SLM printed parts. Arch Civ Mech Eng. 2018. https://doi.org/10.1016/j.acme.2018. 01.015.
  • 20. Scipioni Bertoli U, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des. 2017. https://doi.org/10.1016/j.matdes.2016.10.037.
  • 21. Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV. The effect of layer thickness at selective laser melt ing. Procedia Eng. 2017. https://doi.org/10.1016/j.proeng.2017. 01.179.
  • 22. Pawlak A, Dziedzic R, Kasprowicz M, Stopyra W, Kuźnicka B, Chlebus E, Schob B, Zopp C, Kroll L, Kordass R, Bohlen J (2023) Properties of medium-manganese steel processed by laser powder bed fusion: the effect of microstructure in as-built and intercritically annealed state on energy absorption during tensile and impact tests. Mater Sci Eng A 870:144859. https://doi.org/10. 1016/j.msea.2023.144859.
  • 23. Shi X, Yan C, Feng W, Zhang Y, Leng Z. Effect of high layer thickness on surface quality and defect behaviour of Ti–6Al–4V fabricated by selective laser melting. Opt Laser Technol. 2020. https://doi.org/10.1016/j.optlastec.2020.106471.
  • 24. Le T, Wang X, Peter K, Emil J, Seita M. Experimental analysis of powder layer quality as a function of feedstock and recoating strategies. Addit Manuf. 2021. https://doi.org/10.1016/j.addma. 2021.101890.
  • 25. Dong Z, Liu Y, Wen W, Ge J, Liang J. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modelling and experimental approaches. Materials. 2018. https://doi.org/10.3390/ma12010050.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f9fabb9-358d-4252-b309-bb390be6a4b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.