Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 4 | 1059--1069
Tytuł artykułu

Multi sparsity based spectral attributes for discontinuity detection

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural and stratigraphic discontinuities, such as faults and channels, generally contribute to the construction of traps and reservoirs. Spectral decomposition can utilize the sensitivities of different frequency components to different geological conditions to identify these geological anomalies. The sparse inverse spectral decomposition (SISD) involves a sparse constraint of time–frequency spectra, and one critical parameter is the sparsity which determines the time–frequency resolution. A small sparsity gives a low temporal resolution result that cannot be used for thin-bed detection. Conversely, a large sparsity provides a high-resolution result, but it may lose weak refection signals. The complex geological conditions in the subsurface will lead to some difficulties in detecting the discontinuities by using the SISD method with a fixed sparsity. To address this issue, we propose multi-sparsity-based spectral attributes by fusing the amplitude spectra results of three different sparsities to detect subsurface discontinuities. Compared with the fixed sparsity, the multi-sparsity-based spectral attributes can detect more geological details and highlight geological edges more clearly. The application on a 3D real data with an area of 230 km2 from deep formation in Northwest China exhibits its effectiveness in discontinuity detection. The proposed method can detect the weak or small hidden geological details more and better than the fixed sparsity method, suggesting that it may serve as a future tool for detecting the distribution of geological abnormalities in subsurface.
Wydawca

Czasopismo
Rocznik
Strony
1059--1069
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
  • Northwest Branch of Research Institute of Petroleum Exploration and Development, Petrochina, Lanzhou, China
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China, wangsx@cup.edu.cn
Bibliografia
  • 1. Ahmad MN, Rowell P, Sriburee S (2014) Detection of fluvial sand systems using seismic attributes and continuous wavelet transform spectral decomposition: case study from the gulf of Thailand. Mar Geophys Res 35(2):105–123
  • 2. Al-Dossary S, Marfurt KJ (2006) 3-D volumetric multispectral estimates of reflector curvature and rotation. Geophysics 71(5):P41–P51
  • 3. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202
  • 4. Ben-Zion Y (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46(4):4006
  • 5. Bonar DC, Sacchi MD (2010) Complex spectral decomposition via inversion strategies. In: 80th annual international meeting, SEG, expanded abstracts. pp 1408–1412
  • 6. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159
  • 7. Chopra S, Marfurt KJ (2006) Seismic attribute mapping of structure and stratigraphy. In: 76th annual international meeting, SEG, Expanded Abstracts
  • 8. Chopra S, Sudhakar V, Larsen G, Leong H (2000) Azimuth-based coherence for detecting faults and fractures. World Oil 21(2):57–62
  • 9. Chuang H, Lawton DC (1995) Frequency characteristics of seismic reflections from thin beds. Can J Explor Geophys 31:32–37
  • 10. Gabor D (1946) Theory of communication. J IEEE 93:429–441
  • 11. Gao JH, Chen WC, Li YM et al (2003) Generalized S transform and seismic response analysis of thin interbeds surrounding regions by Gps. Chin J Geophys 46:759–768
  • 12. Han L, Han LG, Li Z (2012) Inverse spectral decomposition with the SPGL1 algorithm. J Geophys Eng 9:423–427
  • 13. Hart BS, Pearson R, Rawling GC (2002) 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs. Lead Edge 21(1):28–35
  • 14. Huang W, Zhang S, Zhang CC, Wei W (2013) Sequence configuration and sedimentary evolution of nenjiang formation in the songliao basin. Acta Sedimentol Sin 31:920–927
  • 15. Li Q, Di BR, Wei JX, Yuan SY, Shi WP (2016) The identification of multi-cave combinations in carbonate reservoirs based on sparsity constraint inverse spectral decomposition. J Geophys Eng 13:940–952
  • 16. Li FY, Qi J, Lyu B, Marfurt KJ (2018) Multispectral coherence. Interpretation 6(1):T61–T69
  • 17. Liu JL, Marfurt KJ (2007) Instantaneous spectral attributes to detect channels. Geophysics 72(2):P23–P31
  • 18. Liu CC, Han L, Zhang YM, Ye YF (2015) Application of seismic complex decomposition on hydrocarbon detection. In: 77th annual international meeting, EAGE, Expanded Abstracts
  • 19. Luo Y, Al-Dossary S, Marhoon M, Alfaraj M (2003) Generalized Hilbert transform and its application in geophysics. Leading Edge 22:198–202
  • 20. Luo C, Li XY, Huang GT (2018) Hydrocarbon identification by application of improved sparse constrained inverse spectral decomposition to frequency-dependent AVO inversion. J Geophys Eng 15:1446–1459
  • 21. Marfurt KJ, Kirlin RL (2001) Narrow-band spectral analysis and thin-bed tuning. Geophysics 66:1274–1283
  • 22. Mittempergher S, Pennacchioni G, Di Toro G (2009) The effects of fault orientation and fluid infiltration on fault rock assemblages at seismogenic depths. J Struct Geol 31(12):1511–1524
  • 23. Morlet J, Arens G, Fourgeau E, Glard D (1982) Wave propagation and sampling theory-Part I: complex signal and scattering in multilayered media. Geophysics 47:203–221
  • 24. Olariu C, Bhattacharya JP (2006) Terminal distributary channels and delta front architecture of river-dominated delta systems. J Sediment Res 76:212–233
  • 25. Oyedele O (2005) 3-D high resolution seismic imaging of deep water systems, SE Green Canyon, Sigsbee Escarpment, Gulf of Mexico. M.S. thesis, University of Houston
  • 26. Partyka GA, Gridley J, Lopez J (1999) Interpretational applications of spectral decomposition in reservoir characterization. Lead Edge 18:353–360
  • 27. Peyton L, Bottjer R, Partyka G (1998) Interpretation of incised valleys using new 3-D seismic techniques: a case history using spectral decomposition and coherency. Lead Edge 17:1294–1298
  • 28. Portniaguine O, Castagna J (2004) Inverse spectral decomposition. In: 74th annual international meeting, SEG, Expanded Abstracts, vol 23, pp 1786–1789
  • 29. Puryear CI, Portniaguine ON, Cobos CM, Castagna JP (2012) Constrained least-squares spectral analysis: application to seismic data. Geophysics 77(5):V143–V167
  • 30. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44:998–1001
  • 31. Tye RS, Coleman JM (1989) Evolution of atchafalaya lacustrine deltas, south-central Louisiana. Sediment Geol 65:95–112
  • 32. Wang ZW, Wang XL, Min X et al (2012) Reservoir information extraction using a fractional fourier transform and a smooth pseudo Wigner–Ville distribution. Appl Geophys 9:391–400
  • 33. Wang X, Zhang B, Li F, Qi J, Bai B (2016) Seismic time-frequency decomposition by using a hybrid basis-matching pursuit technique. Interpretation 4(2):T263–T272
  • 34. Wang Q, Gao JH, Liu NH, Jiang XD (2018a) High-Resolution seismic time–frequency analysis using the synchrosqueezing generalized S-transform. IEEE Geosci Remote Sens Lett 15(3):374–378
  • 35. Wang SX, Yuan SY, Wang TY, Gao JH, Li SJ (2018b) Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection. Geophysics 82(6):O83–O89
  • 36. Wang TY, Yuan SY, Song ZH et al (2018c) Application of sparse inverse spectral attributes to channels detection. In: 80th annual international meeting, EAGE, Expanded Abstracts
  • 37. Widess M (1973) How thin is a thin bed? Geophysics 38(6):1176–1180
  • 38. Yuan SY, Wang SX, Ma M, Ji YZ, Deng L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55(11):6182–6194
  • 39. Yuan SY, Su YX, Wang TY, Wang JH, Wang SX (2019a) Geosteering phase attributes: a new detector for the discontinuities of seismic images. IEEE Geosci Remote Sens Lett 16(1):145–149
  • 40. Yuan SY, Ji YZ, Shi PD, Zeng J, Gao JH, Wang SX (2019b) Sparse Bayesian learning-based seismic high-resolution time-frequency analysis. IEEE Geosci Remote Sens Lett 16(4):623–627
  • 41. Yuan SY, Wang SX, Luo YN, Wei WW, Wang GC (2019c) Impedance inversion by using the low-frequency full-waveform inversion result as a priori model. Geophysics 84(2):R149–R164
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f92f163-be0c-4655-a873-0b696a91e79f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.