Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 60 | 79--90
Tytuł artykułu

Spatial structure of natural landscapes within the Chornobyl Exclusion Zone

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article demonstrates the results of a study of the landscape structure of the Chornobyl Radiation and Ecological Biosphere Reserve (Ukr.: Chornobylskyi radiatsiino-ekolohichnyi biosfernyi zapovidnyk - ChREBR). Because of radioactive pollution, a sharp drop in human activity, and the granting of the territory the status of a protected object, the process of area rewilding took on certain characteristics and led to the return of ecosystems’ natural processes. The studies cover a 7-year period from 2016 to 2022, i.e., from the moment this territory was granted protected status. That territory was abandoned by people more than 37 years ago and the former rural and urban landscapes have either already been transformed or are in the process of being transformed into natural ones. The scale of forest massifs has changed during the previous seven years, which has caused increased pasture overgrowth. huge forest massifs have been lost because of enormous forest fires and floods, particularly along the Pripet and Uzh rivers. Semi-natural successions occur in the gardens, and wooden homes are almost extinct. From orbit, a number of communities no longer resemble settlements. They are cloaked in bushes and trees instead. For places that have been ploughed, the same holds true. The last seven years show that change is happening more slowly than in the decades before. The pattern of natural processes in ecosystems, including periodic fires, the blocking of reclamation channels, and other factors, is the primary driver of changes in the composition of the land cover.
Wydawca

Rocznik
Tom
Strony
79--90
Opis fizyczny
Bibliogr. 44 poz., mapy, rys., tab.
Twórcy
  • Polissia National University, Staryi Blvd, 7, 10008, Zhytomyr, Ukraine, tanyavasiluk2015@gmail.com
  • Chornobyl Radiation and Ecological Biosphere Reserve, 28 Tolochyna St, 28, 07201, Ivankiv, Ukraine
  • Chornobyl Radiation and Ecological Biosphere Reserve, 28 Tolochyna St, 28, 07201, Ivankiv, Ukraine, melnichuktarasv@gmail.com
  • Polissia National University, Staryi Blvd, 7, 10008, Zhytomyr, Ukraine, topolua@ukr.net
Bibliografia
  • Adámek, M. et al. (2015) “Forest fires within a temperate landscape: A decadal and millennial perspective from a sandstone region in Central Europe,” Forest Ecology and Management, 336, pp. 81–90. Available at: https://doi.org/10.1016/j.foreco.2014.10.014.
  • Ager, A.A. et al. (2019) “The wildfire problem in areas contaminated by the Chernobyl disaster,” Science of the Total Environment, 696, 133954. Available at: https://doi.org/10.1016/j.scitotenv.2019.133954.
  • Anspaugh, L.R., Catlin, R.J. and Goldman, M. (1988) “The global impact of the Chernobyl reactor accident,” Science, 242(4885), pp. 1513–1519. Available at: https://doi.org/10.1126/science.3201240.
  • Babushka, A. et al. (2021) “Research of forest fires using remote sensing data (on the example of the Chornobyl Exclusion Zone),” Geodesy, cartography and aerial photography, 94, pp. 35–43. Available at: https://doi.org/10.23939/istcgcap2021.94.035.
  • Beresford, N.A. et al. (2021) “Wildfires in the Chornobyl exclusion zone – Risks and consequences,” Integrated Environmental Assessment and Management, 17(6), pp. 1141–1150. Available at: https://doi.org/10.1002/ieam.4424.
  • Brown, C.F. et al. (2022) “Dynamic world, near real-time global 10 m land use land cover mapping,” Scientific Data, 9(1), 251. Available at: https://doi.org/10.1038/s41597-022-01307-4.
  • ChREBR (no date) Flora Chornobylskoho zapovidnyka. Konspekt pryrodnoi ta spontannoi flory (1091 vyd) sudynnykh roslyn Chornobylskoho radiatsiino-ekolohichnoho biosfernoho zapovidnyka [Flora of Chornobyl Reserve. Synopsis of natural and spontaneous flora (1091 species) of vascular plants of the Chornobyl Radiation and Ecological Biosphere Reserve]. Chornobyl Radiation and Ecological Biosphere Reserve. Available at: https://zapovidnyk.org.ua/index.php?fn=flora (Accessed: April 10, 2023).
  • Connor, D. et al. (2020) “Radiological mapping of post-disaster nuclear environments using fixed-wing unmanned aerial systems: A study from Chornobyl,” Frontiers in Robotics and AI, 6, 149. Available at: https://doi.org/10.3389/frobt.2019.00149.
  • Davids, C. and Tyler, A.N. (2003) “Detecting contamination-induced tree stress within the Chernobyl exclusion zone,” Remote Sensing of Environment, 85(1), pp. 30–38. Available at: https://doi.org/10.1016/s0034-4257(02)00184-0.
  • DAZV (2022) Litopys pryrody. Chornobylskyi radiatsiino-ekolohichnyi biosfernyi zapovidnyk [Annals of nature. Chornobyl Radiation and Ecological Biosphere Reserve], 5. Kyiv: Derzhavne ahentstvo Ukrainy z upravlinnia zonoiu vidchuzhennia. Available at: https://zapovidnyk.org.ua/files-pdf/litopys_2021_tom_5.pdf (Accessed: April 10, 2023).
  • Didukh, Yа.P. et al. (2023) “Vegetation changes within the Chornobyl Exclusion Zone, Ukraine,” Environmental & Socio-economic Studies, 11(1), pp. 13–32. Available at: https://doi.org/10.2478/environ-2023-0002.
  • Esri (no date) ArcGIS Pro. Esri. Available at: https://www.esri.com/enus/arcgis/products/arcgis-pro/overview (Accessed: April 10, 2023).
  • Evangeliou, N. et al. (2014) “Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen?,” Environment International, 73, pp. 346–358. Available at: https://doi.org/10.1016/j.envint.2014.08.012.
  • Evangeliou, N. et al. (2016) “Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment,” Scientific Reports, 6(1), 26062. Available at: https://doi.org/10.1038/srep26062.
  • Fedoniuk, T. et al. (2021) “Assessment of the consequences of forest fires in 2020 on the territory of the Chornobyl Radiation and Ecological Biosphere Reserve,” Scientific Horizons, 24(8), pp. 26–36. Available at: https://doi.org/10.48077/scihor.24(8).2021.26-36.
  • Fedoniuk, T. et al. (2022) “Lemna aequinoctialis migrates further into temperate continental Europe – A new alien aquatic plant for Ukraine,” Feddes Repertorium, 133(4), pp. 305–312. Available at: https://doi.org/10.1002/fedr.202200001.
  • Fedoniuk, T. and Skydan, О. (2023) “Incorporating geographic information technologies into a framework for biological diversity conservation and preventing biological threats to landscapes,” Kosmichna Nauka i Tekhnolohiia, 29(2), pp. 10–21. Available at: https://doi.org/10.15407/knit2023.02.010.
  • Fedoniuk, T.P. et al. (2019) “The influence of landscape structure on the quality index of surface waters,” Journal of Water and Land Development, 43, pp. 56–63. Available at: https://doi.org/10.2478/jwld-2019-0063.
  • Fedonyuk, T.P. et al. (2020) “Prospects and main aspects of the GIS-technologies application for monitoring of biodiversity (on the example of the Chornobyl Radiation-Ecological Biosphere Reserve),” Space Science and Technology, 26(6), pp. 75–93. Available at: https://doi.org/10.15407/knit2020.06.075.
  • Gemitzi, A. (2020) “Are vegetation dynamics impacted from a nuclear disaster? The case of Chernobyl using remotely sensed NDVI and land cover data,” Land, 9(11), 433. Available at: https://doi.org/10.3390/land9110433.
  • González, A.J. (2013) “International policies and strategies for the remediation of land contaminated by radioactive material residues,” Journal of Environmental Radioactivity, 119, pp. 5–12. Available at: https://doi.org/10.1016/j.jenvrad.2010.06.005.
  • Gorelick, N. et al. (2017) “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, 202, pp. 18–27. Available at: https://doi.org/10.1016/j.rse.2017.06.031.
  • Grant, G.E., Tague, C.L. and Allen, C.D. (2013) “Watering the forest for the trees: An emerging priority for managing water in forest landscapes,” Frontiers in Ecology and the Environment, 11(6), pp. 314–321. Available at: https://doi.org/10.1890/120209.
  • Justova, H. et al. (2013) “Analysis of historical retention areas in the emergency zone nuclear power plant,” International Multidisciplinary Scientific GeoConference: SGEM, 5(1, A), pp. 41–48.
  • Kalinichenko, S.A., Nenashev, R.A. and Goloveshkin, V.V. (2019) “Horizontal migration of radionuclides in the top layer of soil of forest ecosystems in the exclusion zone of the Chernobyl Nuclear Power Plant,” International Multidisciplinary Scientific GeoConference: SGEM, 19(1.4), pp. 349–356. Available at: https://doi.org/10.5593/sgem2019V/1.4/S03.043.
  • Kashparov, V.A. et al. (2003) “Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout,” Science of the Total Environment, 317(1–3), pp. 105–119. Available at: https://doi.org/10.1016/s0048-9697(03)00336-x.
  • Laćan, I., McBride, J.R. and Witt De, D. (2015) “Urban forest conditio and succession in the abandoned city of Pripyat, near Chernobyl, Ukraine,” Urban Forestry & Urban Greening, 14(4), pp. 1068–1078. Available at: https://doi.org/10.1016/j.ufug.2015.09.009.
  • Matsala, M. et al. (2021) “The return of nature to the Chernobyl Exclusion Zone: Increases in forest cover of 1.5 times since the 1986 disaster,” Forests, 12(8), 1024. Available at: https://doi.org/10.3390/f12081024.
  • McCulloch, J.S.G. and Robinson, M. (1993) “History of forest hydrology,” Journal of Hydrology, 150(2–4), pp. 189–216. Available at: https://doi.org/10.1016/0022-1694(93)90111-l.
  • Melnichuk, T.V. et al. (2020) Zvit komisii shchodo otsinky naslidkiv vid pozhezh v ekosystemakh Chornobylskoho radiatsiino-ekolohichnoho biosfernoho zapovidnyka prrotiahom kvitnia 2020 r. [Report of the commission on the assessment of the consequences of the fire in the ecosystems of the Chornobyl Radiation and Ecological Biosphere Reserve in April 2020]. Chornobyl: Derzhavne ahentstvo Ukrainy z upravlinnia zonoiu vidchuzhennia, Chornobylskyi radiatsiino-ekolohichnyi biosfernyi zapovidnyk.
  • Perino, A. et al. (2019) “Rewilding complex ecosystems,” Science, 364(6438). Available at: https://doi.org/10.1126/science.aav5570.
  • Perry, D.A., Oren, R. and Hart, S.C. (2008) Forest Ecosystems. 2nd edn. Baltimore: Johns Hopkins University Press.
  • Polozhennia (2017) Polozhennia pro Chornobylskyi radiatsiino-ekolohichnyi biosfernyi zapovidnyk, Nakaz Ministerstva zakhystu dovkillia ta pryrodnykh resursiv Ukrainy No. 43 03.02.2017 [Regulations on the Chornobyl Radiation and Ecological Biosphere Reserve, Order of Ministry of Ecology and Natural Resources of Ukraine No. 43 03.02.2017]. Available at: https://zapovidnyk.org.ua/index.php?fn=polo (Accessed: April 10, 2023).
  • Potapov, P. et al. (2015) “Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive,” Remote Sensing of Environment, 159, pp. 28–43. Available at: https://doi.org/10.1016/j.rse.2014.11.027.
  • Renzi, J.J., He, Q. and Silliman, B.R. (2019) “Harnessing positive species interactions to enhance coastal wetland restoration,” Frontiers in Ecology and Evolution, 7. Available at: https://doi.org/10.3389/fevo.2019.00131.
  • Romanchuck, L.D., Fedonyuk, T.P. and Fedonyuk, R.G. (2017) “Model of influence of landscape vegetation on mass transfer processes,” Biosystems Diversity, 25(3), pp. 203–209. Available at: https://doi.org/10.15421/011731.
  • Santos, P.P. et al. (2019) “Landscape changes at Chernobyl,” Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, 11149, pp. 509–526. Available at: https://doi.org/10.1117/12.2532564.
  • Sevruk, A. et al. (2021) “Study of forest fires according to remotesensing data (on the example of the Chornobyl exclusion zone),” International Conference of Young Professionals «GeoTerrace-2021», 2021. Available at: https://doi.org/10.3997/2214-4609.20215k3010.
  • Seydi, S.T. et al. (2022) “Fire-Net: A deep learning framework for active forest fire detection,” Journal of Sensors, 2022, 8044390. Available at: https://doi.org/10.1155/2022/8044390.
  • Shchyptsov, O.A. et al. (2019) Chornobylska zona vidchuzhennia: Kompleksna richkova naukovo-doslidna ekspedytsiia «Prypiat-2019» [Chornobyl Exclusion Zone: Complex river scientific research expedition “Prypiat-2019”]. O.A. Shchyptsov (ed.). Kiyv: DU “Derzhhidrohrafiia.” Available at: https://zapovidnyk.org.ua/files-pdf/prypiyat-2019-m.pdf (Accessed: April 10, 2023).
  • Skydan, О. et al. (2021) “Landscape fire safety management: The experience of Ukraine and the EU,” News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(450), pp. 125–132. Available at: https://doi.org/10.32014/2021.2518-170x.128.
  • Skydan, О. et al. (2022a) Kosmichne ta heoinformatsiine zabezpechennia pryiniattia rishen u kliuchovykh sferakh natsionalnoi bezpeky i oborony Ukrainy [Space and geoinformation support for decision-making in key areas of national security and defence of Ukraine]. Zhytomyr: Ministerstvo osvity i nauky Ukrainy, Poliskyi natsionalnyi universytet.
  • Skydan, О. et al. (2022b) “Monitoring tree mortality in Ukrainian Pinus sylvestris L. forests using remote sensing data from earth observing satellites,” Annals of Forest Research, 65(2), pp. 91–101. Available at: https://doi.org/10.15287/afr.2022.2328.
  • Trouwborst, A. and Svenning, J. (2022) “Megafauna restoration as a legal obligation: International biodiversity law and the rehabilitation of large mammals in Europe,” Review of European, Comparative and International Environmental Law, 31(2), pp. 182–198. Available at: https://doi.org/10.1111/reel.12443.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f6a063e-18e4-43de-8617-b41ac7cc2dea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.