Warianty tytułu
Języki publikacji
Abstrakty
Landslides are considered to be one of the most significant and critical natural hazards in the heterogeneous geomor-phological setting of the Rif region of Morocco. Despite the high susceptibility to landslides, the region lacks detailed studies. Therefore, this research introduces four advanced machine learning methods, namely Support Vector Machine (SVM), Classification and Regression Trees (CART), Multivariate Discriminant Analysis (MDA), and Logistic Regression (LR), to perform landslide susceptibility mapping, as well as study of the connection between landslide occurrence and the complex regional geo-environmental context of Taounate province. Fifteen causative factors were extracted, and 255 landslide events were identified through fieldwork and satellite imagery analysis. All models performed very well (AUC > 0.954), while the CART model performed the best (AUC= 0.971). However, SVM demonstrated superior performance compared to other methods, achieving the highest accuracy (89.92%) and F1-measure (81.66%) scores on the training data, and the highest accuracy (83.01%), precision (81.74%), and specificity (79.46%) scores on the test data. The results do not necessarily indicate that LR and MDA have the lowest predictive ability, as they demonstrated high accuracy in terms of AUC and in some classification tasks. Moreover, they provide the significant advantage of easy interpretation of the geo-environmental processes that control landslides. Rainfall is the primary triggering factor of landslides in the study area. The majority of landslides occurred on slopes, particularly those located along rivers and faults, suggesting that landslides in the region are closely associated with active tectonics and precipitation. All four models predicted similar spatial distribution patterns in landslide susceptibility. The results showed that almost half of the area mainly in the north and northwest, has a very high susceptibility to landslides. The findings provide valuable references for land use management and the implementation of effective measures for landslide prevention.
Słowa kluczowe
Rocznik
Tom
Strony
272--292
Opis fizyczny
Bibliogr. 76 poz., rys., tab.
Twórcy
autor
- Geosciences, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University, Avenue Ibn Batouta, Rabat 10100, Morocco, maryem_hamidi@um5.ac.ma
autor
- Geosciences, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University, Avenue Ibn Batouta, Rabat 10100, Morocco
autor
- Electrical and Computer Engineering Department, Seattle University, Seattle, WA 98122, USA
autor
- Geosciences, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University, Avenue Ibn Batouta, Rabat 10100, Morocco
autor
- Géoscience Environnement Toulouse, IRD, CNRS, UPS, OMP, Mixed Research Unit 5563, 14 Av. E. Belin, 31400 Toulouse, France
autor
- Geosciences, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University, Avenue Ibn Batouta, Rabat 10100, Morocco
autor
- Mixed Research Unit EMMAH (Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes), Hydrogeology Laboratory, Avignon University, 84916 Avignon, France
autor
- NorthWest Research Associates & Pan Ocean Remote Sensing Association, Seattle, WA 98105, USA
Bibliografia
- 1. Abdı, A., Bouamrane, A., Karech, T., Dahri, N., & Kaouachi, A. (2021). Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering, 39(8), 5675–5691. https://doi.org/10.1007/s10706-021-01855-3
- 2. Abidi, A., Demehati, A., & El Qandil, M. (2019). Landslide Susceptibility Assessment Using Evidence Belief Function and Frequency Ratio Models in Taounate city (North of Morocco). Geotechnical and Geological Engineering, 37(6), 5457–5471. https://doi.org/10.1007/s10706-019-00992-0
- 3. Ado, M., Amitab, K., Maji, A. K., Jasińska, E., Gono, R., Leonowicz, Z., & Jasiński, M. (2022). Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing, 14(13), Article 13. https://doi.org/10.3390/rs14133029
- 4. Anis, Z., Wissem, G., Vali, V., Smida, H., & Essghaier, G. M. (2019). GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia. Open Geosciences, 11(1), 708–726. https://doi.org/10.1515/geo-2019-0056
- 5. Argyriou, A. V., Polykretis, C., Teeuw, R. M., & Papadopoulos, N. (2022). Geoinformatic Analysis of Rainfall-Triggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping. Sustainability, 14(7), Article 7. https://doi.org/10.3390/su14073956
- 6. Barman, J., Ali, S. S., Biswas, B., & Das, J. (2023). Application of index of entropy and Geospatial techniques for landslide prediction in Lunglei district, Mizoram, India. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2023.06.006
- 7. Benabdelouahab, T., Gadouali, F., Boudhar, A., Lebrini, Y., Hadria, R., & Salhi, A. (2020). Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region. Theoretical and Applied Climatology, 141(1), 309–320. https://doi.org/10.1007/s00704-020-03205-4
- 8. Benchelha, S., Aoudjehane, H. C., Hakdaoui, M., El Hamdouni, R., Mansouri, H., Benchelha, T., Layelmam, M., & Alaoui, M. (2020). Landslide Susceptibility Mapping in the Commune of Oudka, Taounate Province, North Morocco: A Comparative Analysis of Logistic Regression, Multivariate Adaptive Regression Spline, and Artificial Neural Network Models. Environmental & Engineering Geoscience, 26(2), 185–200. https://doi.org/10.2113/EEG-2243
- 9. Bouramtane, T., Hilal, H., Rezende-Filho, A. T., Bouramtane, K., Barbiero, L., Abraham, S., Valles, V., Kacimi, I., Sanhaji, H., Torres-Rondon, L., de Castro, D. D., Vieira Santos, J. da C., Ouardi, J., Beqqali, O. E., Kassou, N., & Morarech, M. (2022). Mapping Gully Erosion Variability and Susceptibility Using Remote Sensing, Multivariate Statistical Analysis, and Machine Learning in South Mato Grosso, Brazil. Geosciences, 12(6), 235. https://doi.org/10.3390/geosciences12060235
- 10. Bouramtane, T., Tiouiouine, A., Kacimi, I., Valles, V., Talih, A., Kassou, N., Ouardi, J., Saidi, A., Morarech, M., Yameogo, S., Kbiri, H. E., Rhazal, H., Achach, H., & Barbiero, L. (2020). Drainage Network Patterns Determinism: A Comparison in Arid, Semi-Arid and Semi-Humid Area of Morocco Using Multifactorial Approach. Hydrology, 7(4), Article 4. https://doi.org/10.3390/hydrology7040087
- 11. Brahim, L. A., Bousta, M., Jemmah, I. A., Hamdouni, I. E., ElMahsani, A., Abdelouafi, A., Alaoui, F. S., & Lallout, I. (2018). Landslide susceptibility mapping using AHP method and GIS in the peninsula of Tangier (Rif-northern morocco). MATEC Web of Conferences, 149, 02084. https://doi.org/10.1051/matecconf/201814902084
- 12. Bravo-López, E., Fernández Del Castillo, T., Sellers, C., & Delgado-García, J. (2022). Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador. Remote Sensing, 14(14), Article 14. https://doi.org/10.3390/rs14143495
- 13. Broeckx, J., Vanmaercke, M., Duchateau, R., & Poesen, J. (2018). A data-based landslide susceptibility map of Africa. Earth-Science Reviews, 185, 102–121. https://doi.org/10.1016/j.earscirev.2018.05.002
- 14.Chen, W., Pourghasemi, H. R., Kornejady, A., & Zhang, N. (2017). Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305, 314–327. https://doi.org/10.1016/j.geoderma.2017.06.020
- 15. Chen, W., Shahabi, H., Zhang, S., Khosravi, K., Shirzadi, A., Chapi, K., Pham, B. T., Zhang, T., Zhang, L., Chai, H., Ma, J., Chen, Y., Wang, X., Li, R., & Ahmad, B. B. (2018). Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Applied Sciences, 8(12), Article 12. https://doi.org/10.3390/app8122540
- 16. Clapuyt, F., Vanacker, V., Christl, M., Van Oost, K., & Schlunegger, F. (2019). Spatio-temporal dynamics of sediment transfer systems in landslide-prone Alpine catchments. Solid Earth, 10(5), 1489–1503. https://doi.org/10.5194/se-10-1489-2019
- 17. Earth Science Data Systems, N. (2020, August 19). Landslides Data Pathfinder [Data Pathfinder]. Earthdata; Earth Science Data Systems, NASA. https://www.earthdata.nasa.gov/learn/pathfinders/disasters/landslides-data-pathfinder
- 18. El Kharim, Y., Bounab, A., Ilias, O., Hilali, F., & Ahniche, M. (2021). Landslides in the urban and suburban perimeter of Chefchaouen (Rif, Northern Morocco): Inventory and case study. Natural Hazards, 107(1), 355–373. https://doi.org/10.1007/s11069-021-04586-z
- 19. El-Assri, E., Barnossi, A. E., Chebaibi, M., Hmamou, A., Asmi, H. E., Bouia, A., & Eloutassi, N. (2021). Ethnobotanical survey of medicinal and aromatic plants in Taounate, Pre-Rif of Morocco. Ethnobotany Research and Applications, 22, 1–23. Retrieved from https://ethnobotanyjournal.org/index.php/era/article/view/3113
- 20. El-Fengour, A., Motaki, H. E., & Bouzidi, A. E. (2021). Landslides susceptibility modelling using Multivariate Logistic Regression Model in the Sahla Watershed in Northern Morocco. Sociedade & Natureza, 33. https://doi.org/10.14393/SN-v33-2021-59124
- 21. Elmoulat, M., & Ait Brahim, L. (2018). Landslides susceptibility mapping using GIS and weights of evidence model in Tetouan-Ras-Mazari area (Northern Morocco). Geomatics, Natural Hazards and Risk, 9(1), 1306–1325. https://doi.org/10.1080/19475705.2018.1505666
- 22. Es-smairi, A., El Moutchou, B., & Touhami, A. E. O. (2021). Landslide susceptibility assessment using analytic hierarchy process and weight of evidence methods in parts of the Rif chain (northernmost Morocco). Arabian Journal of Geosciences, 14(14), 1346. https://doi.org/10.1007/s12517-021-07660-9
- 23. Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D. J., Tanelli, S., & Parodi, A. (2014). Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmospheric Research, 138, 13–29. https://doi.org/10.1016/j.atmosres.2013.10.007
- 24. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
- 25. Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011
- 26. Habumugisha, J. M., Chen, N., Rahman, M., Islam, M. M., Ahmad, H., Elbeltagi, A., Sharma, G., Liza, S. N., & Dewan, A. (2022). Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3), Article 3. https://doi.org/10.3390/su14031734
- 27. Hamdouni, I. E., Brahim, L. A., Mahsani, A. E., & Abdelouafi, A. (2022). The Prevention of Landslides Using the Analytic Hierarchy Process (AHP) in a Geographic Information System (GIS) Environment in the Province of Larache, Morocco. Geomatics and Environmental Engineering, 16(2), Article 2. https://doi.org/10.7494/geom.2022.16.2.77
- 28. Hong, H. (2023). Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecological Indicators, 147, 109968. https://doi.org/10.1016/j.ecolind.2023.109968
- 29. Huang, F., Chen, J., Du, Z., Yao, C., Huang, J., Jiang, Q., Chang, Z., & Li, S. (2020). Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS International Journal of Geo-Information, 9(6), Article 6. https://doi.org/10.3390/ijgi9060377
- 30.Jemmah, A. I., & Brahim, L. A. (2018). Mass movement susceptibility mapping—A comparison of logistic regression and Weight of evidence methods in Taounate-Ain Aicha region (Central Rif, Morocco). MATEC Web of Conferences, 149, 02094. https://doi.org/10.1051/matecconf/201814902094
- 31.Jiang, Z., Chen, Y., Yang, T.-Y., Ji, W., Dong, Z. (Sasha), & Ji, R. (2023). Leveraging Machine Learning and Simulation to Advance Disaster Preparedness Assessments through FEMA National Household Survey Data. Sustainability, 15(10), Article 10. https://doi.org/10.3390/su15108035
- 32. Kadavi, P. R., Lee, C.-W., & Lee, S. (2018). Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping. Remote Sensing, 10(8), Article 8. https://doi.org/10.3390/rs10081252
- 33. Kalantar, B., Al-Najjar, H. A. H., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Naghibi, S. A. (2019). Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping. Water, 11(9), Article 9. https://doi.org/10.3390/w11091909
- 34. Karmouda, N., Kacimi, I., ElKharrim, M., Brirhet, H., & Hamidi, M. (2022). Geo-statistical and hydrological assessment of three satellite precipitation products over Ouergha basin (Northern Morocco). Arabian Journal of Geosciences, 15(3), 235. https://doi.org/10.1007/s12517-021-09124-6
- 35. Li, G., West, A. J., Densmore, A. L., Hammond, D. E., Jin, Z., Zhang, F., Wang, J., & Hilton, R. G. (2016). Connectivity of earthquake-triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake. Journal of Geophysical Research: Earth Surface, 121(4), 703–724. https://doi.org/10.1002/2015JF003718
- 36. Lombardo, L., Bachofer, F., Cama, M., Märker, M., & Rotigliano, E. (2016). Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy). Earth Surface Processes and Landforms, 41(12), 1776–1789. https://doi.org/10.1002/esp.3998
- 37. Mathbout, S., Lopez-Bustins, J. A., Royé, D., Martin-Vide, J., & Benhamrouche, A. (2020). Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. International Journal of Climatology, 40(3), 1435–1455. https://doi.org/10.1002/joc.6278
- 38. Meena, S. R., Puliero, S., Bhuyan, K., Floris, M., & Catani, F. (2022). Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy). Natural Hazards and Earth System Sciences, 22(4), 1395–1417. https://doi.org/10.5194/nhess-22-1395-2022
- 39. Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225
- 40. Michard, A., Mokhtari, A., Chalouan, A., Saddiqi, O., Rossi, P., & Rjimati, E.-C. (2014). New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides. Bulletin de La Société Géologique de France, 185(5), 313–328. https://doi.org/10.2113/gssgfbull.185.5.313
- 41. Naceur, H. A., Abdo, H. G., Igmoullan, B., Namous, M., Almohamad, H., Al Dughairi, A. A., & Al-Mutiry, M. (2022). Performance assessment of the landslide susceptibility modelling using the support vector machine, radial basis function network, and weight of evidence models in the N’fis river basin, Morocco. Geoscience Letters, 9(1), 39. https://doi.org/10.1186/s40562-022-00249-4
- 42. Nolasco-Javier, D., Kumar, L., & Tengonciang, A. M. P. (2015). Rapid appraisal of rainfall threshold and selected landslides in Baguio, Philippines. Natural Hazards, 78(3), 1587–1607. https://doi.org/10.1007/s11069-015-1790-y
- 43. Ozer, B. C., Mutlu, B., Nefeslioglu, H. A., Sezer, E. A., Rouai, M., Dekayir, A., & Gokceoglu, C. (2020). On the use of hierarchical fuzzy inference systems (HFIS) in expert-based landslide susceptibility mapping: The central part of the Rif Mountains (Morocco). Bulletin of Engineering Geology and the Environment, 79(1), 551–568. https://doi.org/10.1007/s10064-019-01548-5
- 44. Pal, K., & Patel, Biraj. V. (2020). Data Classification with k-fold Cross Validation and Holdout Accuracy Estimation Methods with 5 Different Machine Learning Techniques. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 83–87. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00016
- 45. Pham, B. T., Pradhan, B., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2016). A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling & Software, 84, 240–250. https://doi.org/10.1016/j.envsoft.2016.07.005
- 46. Pham, B. T., Vu, V. D., Costache, R., Phong, T. V., Ngo, T. Q., Tran, T.-H., Nguyen, H. D., Amiri, M., Tan, M. T., Trinh, P. T., Le, H. V., & Prakash, I. (2022). Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto International, 37(18), 5175–5200. https://doi.org/10.1080/10106049.2021.1914746
- 47. Poggi, V., Garcia-Peláez, J., Styron, R., Pagani, M., & Gee, R. (2020). A probabilistic seismic hazard model for North Africa. Bulletin of Earthquake Engineering, 18(7), 2917–2951. https://doi.org/10.1007/s10518-020-00820-4
- 48. Poujol, A., Ritz, J.-F., Tahayt, A., Vernant, P., Condomines, M., Blard, P.-H., Billant, J., Vacher, L., Tibari, B., Hni, L., & Idrissi, A. K. (2014). Active tectonics of the Northern Rif (Morocco) from geomorphic and geochronological data. Journal of Geodynamics, 77, 70–88. https://doi.org/10.1016/j.jog.2014.01.004
- 49. Pourghasemi, H. R., Sadhasivam, N., Amiri, M., Eskandari, S., & Santosh, M. (2021). Landslide susceptibility assessment and mapping using state of-the art machine learning techniques. Natural Hazards, 108(1), 1291–1316. https://doi.org/10.1007/s11069-021-04732-7
- 50. Prakash, B. T. P. and I. (2018). Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India. Indian Journal of Science and Technology, 11(12), 1–10. https://doi.org/10.17485/ijst/2018/v11i12/99745
- 51. Prasad, A. S., & Francescutti, L. H. (2017). Natural Disasters. In S. R. Quah (Ed.), International Encyclopedia of Public Health (Second Edition) (pp. 215–222). Academic Press. https://doi.org/10.1016/B978-0-12-803678-5.00519-1
- 52. Qu, Y., Quan, P., Lei, M., & Shi, Y. (2019). Review of bankruptcy prediction using machine learning and deep learning techniques. Procedia Computer Science, 162, 895–899. https://doi.org/10.1016/j.procs.2019.12.065
- 53. Rabby, Y. W., & Li, Y. (2020). Landslide Susceptibility Mapping Using Integrated Methods: A Case Study in the Chittagong Hilly Areas, Bangladesh. Geosciences, 10(12), Article 12. https://doi.org/10.3390/geosciences10120483
- 54.Rahmati, O., Falah, F., Naghibi, S. A., Biggs, T., Soltani, M., Deo, R. C., Cerdà, A., Mohammadi, F., & Tien Bui, D. (2019). Land subsidence modelling using tree-based machine learning algorithms. Science of The Total Environment, 672, 239–252. https://doi.org/10.1016/j.scitotenv.2019.03.496
- 55. Rajaneesh, A., Vishnu, C. L., Oommen, T., Rajesh, V. J., & Sajinkumar, K. S. (2022). Machine learning as a tool to classify extra-terrestrial landslides: A dossier from Valles Marineris, Mars. Icarus, 376, 114886. https://doi.org/10.1016/j.icarus.2022.114886
- 56. Ramos-Bernal, R. N., Vázquez-Jiménez, R., Tizapa, S. S., Matus, R. A., Ramos-Bernal, R. N., Vázquez-Jiménez, R., Tizapa, S. S., & Matus, R. A. (2019). Characterization of Susceptible Landslide Zones by an Accumulated Index. In Landslides—Investigation and Monitoring. IntechOpen. https://doi.org/10.5772/intechopen.89828
- 57. Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
- 58. Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., & Godt, J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. https://doi.org/10.1016/j.geomorph.2017.01.030
- 59. Roccati, A., Faccini, F., Luino, F., Ciampalini, A., & Turconi, L. (2019). Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water, 11(3), Article 3. https://doi.org/10.3390/w11030605
- 60. Sadiki, M., Manaouch, M., Aghad, M., Batchi, M., & Karkouri, J. A. (2023). Identifying Landslides Prone-Areas Using GIS-based Fuzzy Analytical Hierarchy Process Model in Ziz Upper Watershed (Morocco). Ecological Engineering & Environmental Technology, 24(1), 67–83. https://doi.org/10.12912/27197050/154916
- 61. Saha, S., Roy, J., Pradhan, B., & Hembram, T. K. (2021). Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Advances in Space Research, 68(7), 2819–2840. https://doi.org/10.1016/j.asr.2021.05.018
- 62. Salhi, A., Martin-Vide, J., Benhamrouche, A., Benabdelouahab, S., Himi, M., Benabdelouahab, T., & Casas Ponsati, A. (2019). Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Applied Sciences, 1(3), 277. https://doi.org/10.1007/s42452-019-0290-1
- 63. Stoffel, M., Tiranti, D., & Huggel, C. (2014). Climate change impacts on mass movements—Case studies from the European Alps. Science of The Total Environment, 493, 1255–1266. https://doi.org/10.1016/j.scitotenv.2014.02.102
- 64. Tang, R.-X., Kulatilake, P. H. S. W., Yan, E.-C., & Cai, J.-S. (2020). Evaluating landslide susceptibility based on cluster analysis, probabilistic methods, and artificial neural networks. Bulletin of Engineering Geology and the Environment, 79(5), 2235–2254. https://doi.org/10.1007/s10064-019-01684-y
- 65. Tavakkoli Piralilou, S., Shahabi, H., Jarihani, B., Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., & Aryal, J. (2019). Landslide Detection Using Multi-Scale Image Segmentation and Different Machine Learning Models in the Higher Himalayas. Remote Sensing, 11(21), Article 21. https://doi.org/10.3390/rs11212575
- 66. Tramblay, Y., & Somot, S. (2018). Future evolution of extreme precipitation in the Mediterranean. Climatic Change, 151(2), 289–302. https://doi.org/10.1007/s10584-018-2300-5
- 67. Tsunetaka, H. (2021). Comparison of the return period for landslide-triggering rainfall events in Japan based on standardization of the rainfall period. Earth Surface Processes and Landforms, 46(14), 2984–2998. https://doi.org/10.1002/esp.5228
- 68. Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752. https://doi.org/10.1080/19475705.2016.1144655
- 69. Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L. F., & Nie, W. (2021). A Novel Hybrid Method for Landslide Susceptibility Mapping-Based Geo-Detector and Machine Learning Cluster: A Case of Xiaojin County, China. ISPRS International Journal of Geo-Information, 10(2), Article 2. https://doi.org/10.3390/ijgi10020093
- 70. Xing, Y., Yue, J., Guo, Z., Chen, Y., Hu, J., & Travé, A. (2021). Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China. Frontiers in Earth Science, 9, 722491. https://doi.org/10.3389/feart.2021.722491
- 71. Yousefi, S., Pourghasemi, H. R., Emami, S. N., Pouyan, S., Eskandari, S., & Tiefenbacher, J. P. (2020). A machine learning framework for multihazards modeling and mapping in a mountainous area. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-69233-2
- 72. Youssef, A. M., & Pourghasemi, H. R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2), 639–655. https://doi.org/10.1016/j.gsf.2020.05.010
- 73. Zhao, B., Zhu, J., Hu, Y., Liu, Q., & Liu, Y. (2022). Mapping landslide sensitivity based on machine learning: A case study in Ankang City, Shaanxi Province, China. Geofluids, 2022, e2058442. https://doi.org/10.1155/2022/2058442
- 74. Zhao, P., Masoumi, Z., Kalantari, M., Aflaki, M., & Mansourian, A. (2022). A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sensing, 14(1), Article 1. https://doi.org/10.3390/rs14010211
- 75. Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., & Pourghasemi, H.R. (2018). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers & Geosciences, 112, 23–37. https://doi.org/10.1016/j.cageo.2017.11.019
- 76. Zhou, X., Wu, W., Qin, Y., & Fu, X. (2021). Geoinformation-based landslide susceptibility mapping in subtropical area. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-03743-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f3f9449-e9a8-494e-bd95-ea20087ee36e