Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 24, nr 4 | 501--516
Tytuł artykułu

Estimating root zone moisture from surface soil using limited data

Warianty tytułu
PL
Określanie wilgotności gleby powierzchniowej w strefie korzeniowej na podstawie ograniczonej liczby danych
Języki publikacji
EN
Abstrakty
EN
For estimation of root-zone moisture content from EO-1/Hyperion imagery, surface soil moisture was first predicted by hyperspectral reflectance data using partial least square regression (PLSR) analysis. The textures of more than 300 soil samples extracted from a 900 m × 900 m field site located within the Hetao Irrigation District in China were used to parameterize the HYDRUS-1D numerical model. The study area was spatially discretized into 18,000 compartments (30 m × 30 m × 0.02 m), and Monte Carlo simulations were applied to generate 2000 different soil-particle size distributions for each compartment. Soil hydraulic properties for each realization were determined by application of artificial neural network analysis and used to parameterize HYDRUS-1D to simulate averaged soil-moisture contents within the root zone (0-40 cm) and surface (approximately 0-4 cm). Then the link between surface moisture and root zone was established by use of linear regression analysis, resulting in R and RMSE of 0.38 and 0.03, respectively. Kriging and co-kriging with observed surface moisture, and co-kriging with surface moisture obtained from Hyperion imagery were also used to estimate root-zone moisture. Results indicated that PLSR is a powerful tool for soil moisture estimation from hyperspectral data. Furthermore, co-kriging with observed surface moisture had the highest R (0.41) and linear regression model, and HYDRUS Monte Carlo simulations had a lowest RMSE (0.03) among the four methods. In regions that have similar climatic and soil conditions to our study area, a linear regression model with HYDRUS Monte Carlo simulations is a practical method for root-zone moisture estimation before sowing and it can be easily coupled with remote sensing technology.
Wydawca

Rocznik
Strony
501--516
Opis fizyczny
Bibliogr. 49 poz., rys., wykr., tab.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P.R. China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P.R. China
autor
  • School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, P.R. China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P.R. China
autor
  • Changjiang Institute of Survey, Planning, Design and Research, Wuhan, 430010, P.R. China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P.R. China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, P.R. China, huangjiesheng1962@gmail.com
Bibliografia
  • [1] Callaghan MV, Head FA, Cey EE, Bentley LR. Salt leaching in fine-grained, macroporous soil: Negative effects of excessive matrix saturation. Agricult Water Manage. 2017;181:73-84. DOI: 10.1016/j.agwat.2016.11.025.
  • [2] He K, Yang Y, Yang Y, Chen S, Hu Q, Liu X, et al. Hydrus simulation of sustainable brackish water irrigation in a winter wheat-summer maize rotation system in the north china plain. Water. 2017;9(7):536. DOI: 10.3390/w9070536.
  • [3] Trujillo-González J, Mahecha-Pulido J, Torres-Mora M, Brevik E, Keesstra S, Jiménez-Ballesta R. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture. 2017;7(7):52. DOI: 10.3390/agriculture7070052.
  • [4] Li Y, Šimůnek J, Wang S, Yuan J, Zhang W. Modeling of soil water regime and water balance in a transplanted rice field experiment with reduced irrigation. Water. 2017;9(4):248. DOI: 10.3390/w9040248.
  • [5] García-Garizábal I, Causapé J, Merchán D. Evaluation of alternatives for flood irrigation and water usage in spain under mediterranean climate. CATENA. 2017;155:127-134. DOI: 10.1016/j.catena.2017.02.019.
  • [6] Jalali V, Asadi Kapourchal S, Homaee M. Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricult Water Manage. 2017;180:13-21. DOI: 10.1016/j.agwat.2016.10.015.
  • [7] Hassan-Esfahani L, Torres-Rua A, Jensen A, Mckee M. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high-resolution visual, nir, and thermal imagery. Irrigation Drainage. 2017;66(2):273-288. DOI: 10.1002/ird.2098.
  • [8] Veihmeyer FJ, Hendrickson AH. The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 1931;32(3):181-194. DOI: 10.1097/00010694-193109000-00003.
  • [9] Shepherd KD, Walsh MG. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J. 2002;66(3):988-998. DOI: DOI: 10.2136/sssaj2002.9880.
  • [10] Nanni MR, Demattê JAM. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J. 2006;70:393-407. DOI: 10.2136/sssaj2003.0285.
  • [11] Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, et al. An extended AVHRR 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int J Remote Sens. 2005;26(20):4485-4498. DOI: 10.1080/01431160500168686.
  • [12] Liu G, Guo H, Yan S, Song R, Ruan Z, Lv M. Revealing the surge behaviour of the yangtze river headwater glacier during 1989-2015 with tandem-x and landsat images. J Glaciology. 2017;63(238):382-386. DOI: 10.1017/jog.2017.4.
  • [13] Shahtahmassebi AR, Lin Y, Lin L, Atkinson PM, Moore N, Wang K, et al. Reconstructing historical land cover type and complexity by synergistic use of landsat multispectral scanner and corona. Remote Sensing. 2017;9(7):682. DOI: 10.3390/rs9070682.
  • [14] Yu H, Kong B, Wang G, Du R, Qie G. Prediction of soil properties using a hyperspectral remote sensing method. Archives Agronomy Soil Sci. 2017:1-14. DOI: 10.1080/03650340.2017.1359416.
  • [15] Rocha Neto O, Teixeira A, Leão R, Moreira L, Galvão L. Hyperspectral remote sensing for detecting soil salinization using prospectir-vs aerial imagery and sensor simulation. Remote Sensing. 2017;9(1):42. DOI: 10.3390/rs9010042.
  • [16] Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, et al. Using imaging spectroscopy to study soil properties. Remote Sens Environ. 2009;113:S38-S55. DOI: 10.1016/j.rse.2008.09.019.
  • [17] Calzolari C, Ungaro F. Predicting shallow water table depth at regional scale from rainfall and soil data. J Hydrol. 2012;414:374-387. DOI: 10.1016/j.jhydrol.2011.11.008.
  • [18] Vauclin M, Vieira S, Vachaud G, Nielsen D. The use of cokriging with limited field soil observations. Soil Sci Soc Am J. 1983;47(2):175-184. DOI: 10.2136/sssaj1983.03615995004700020001x.
  • [19] Sun RH, Liu QL, Chen LD. Study on precipitation based on the geostatistical analyst method. J China Hydrol. 2010;30(1):14-18. DOI: 10.3969/j.issn.1000-0852.2010.01.003.
  • [20] Yates SR, Warrick AW. Estimating soil water content using cokriging. Soil Sci Soc Am J. 1987;51(1):23-30. DOI: 10.2136/sssaj1987.03615995005100010005x.
  • [21] Ghadermazi J, Sayyad G, Mohammadi J, Moezzi A, Ahmadi F, Schulin R. Spatial prediction of nitrate concentration in drinking water using ph as auxiliary co-kriging variable. Procedia Environ Sci. 2011;3(0):130-135. DOI: 10.1016/j.proenv.2011.02.023.
  • [22] Regalado CM, Ritter A, Rodríguez-González RM. Performance of the commercial wet capacitance sensor as compared with time domain reflectometry in volcanic soils. Vadose Zone J. 2007;6(2):244-254. DOI: 10.2136/vzj2006.0138.
  • [23] Blonquist Jr J, Jones SB, Robinson D. A time domain transmission sensor with tdr performance characteristics. J Hydrol. 2005;314(1):235-245. DOI: 10.1016/j.jhydrol.2005.04.005.
  • [24] Manfreda S, Brocca L, Moramarco T, Melone F, Sheffield J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol Earth Syst Sci. 2014;18(3):1199-1212. DOI: 10.5194/hess-18-1199-2014.
  • [25] Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput Electron Agr. 2001;31(3):213-237. DOI: 10.1016/S0168-1699(00)00184-8.
  • [26] Kilmer VJ, Alexander LT. Methods of making mechanical analyses of soils. Soil Sci. 1949;68(1):15-24. DOI: 10.1097/00010694-194907000-00003.
  • [27] Geladi P, Kowalski BR. Partial least-squares regression: A tutorial. Analytica Chim Acta. 1986;185:1-17. DOI: 10.1016/0003-2670(86)80028-9.
  • [28] Wold S, Ruhe A, Wold H, Dunn WJ. The collinearity problem in linear regression. The partial least squares (pls) approach to generalized inverses. SIAM J Sci Stat Computing. 1984;5(3):735-743. DOI: 10.1137/0905052.
  • [29] Helland IS. On the structure of partial least squares regression. Communic Statistics-Simul Comput. 1988;17(2):581-607. DOI: 10.1080/03610918808812681.
  • [30] Abdi H. Partial least squares regression and projection on latent structure regression (pls regression). Wiley Interdisciplin Reviews: Computat Statistics. 2010;2(1):97-106. DOI: 10.1002/wics.51.
  • [31] Gomez C, Viscarra Rossel RA, Mcbratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An Australian case study. Geoderma. 2008;146(3):403-411. DOI: 10.1016/j.geoderma.2008.06.011.
  • [32] Chen H, Pan T, Chen J, Lu Q. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics Intell Labor Systems. 2011;107(1):139-146. DOI: 10.1016/j.chemolab.2011.02.008.
  • [33] Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sens Environ. 1998;66(1):41-51. DOI: 10.1016/S0034-4257(98)00032-7.
  • [34] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892-898. DOI: 10.2136/sssaj1980.03615995004400050002x.
  • [35] Schaap MG, Leij FJ, Van Genuchten MT. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol. 2001;251(3-4):163-176. DOI: 10.1016/s0022-1694(01)00466-8.
  • [36] Hu SZ, Qiao DM, Shi HB. Analysis on root ecological and physiological characteristics of sunflower. J Arid Land Resour Environ. 2006;20(6):192-197. DOI: 10.3969/j.issn.1003-7578.2006.06.037.
  • [37] Zeng W, Xu C, Wu J, Huang J, Zhao Q, Wu M. Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus l.). Pedosphere. 2014;24(5):635-644. DOI: 10.1016/S1002-0160(14
  • [38] Holzman ME, Rivas R, Piccolo MC. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int J Appl Earth Observ Geoinformation. 2014;28:181-192. DOI: 10.1016/j.jag.2013.12.006.
  • [39] Lobell DB, Asner GP. Moisture effects on soil reflectance. Soil Sci Soc Am J. 2002;66(3):722-727. DOI: 10.2136/sssaj2002.7220.
  • [40] Morel J, Bégué A, Todoroff P, Martiné J-F, Lebourgeois V, Petit M. Coupling a sugarcane crop model with the remotely sensed time series of fipar to optimise the yield estimation. Eur J Agron. 2014;61:60-68. DOI: 10.1016/j.eja.2014.08.004.
  • [41] Haubrock SN, Chabrillat S, Lemmnitz C, Kaufmann H. Surface soil moisture quantification models from reflectance data under field conditions. Int J Remote Sens. 2008;29(1):3-29. DOI: 10.1080/01431160701294695.
  • [42] Whiting ML, Li L, Ustin SL. Predicting water content using Gaussian model on soil spectra. Remote Sens Environ. 2004;89(4):535-552. DOI: 10.1016/j.rse.2003.11.009.
  • [43] Diepen CV, Wolf J, Keulen HV, Rappoldt C. Wofost: A simulation model of crop production. Soil Use Manage. 1989;5(1):16-24. DOI: 10.1111/j.1475-2743.1989.tb00755.x.
  • [44] Boogaard H, Wolf J, Supit I, Niemeyer S, Van Ittersum M. A regional implementation of wofost for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop Res. 2013;143:130-142. DOI: 10.1016/j.fcr.2012.11.005.
  • [45] Kornelsen K C, Coulibaly P. Root-zone soil moisture estimation using data-driven methods. Water Resour Res. 2014;50(4):2946-2962. DOI: 10.1002/2013WR014127.
  • [46] Das NN, Mohanty BP. Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone J. 2006;5(1):296-307. DOI: 10.2136/vzj2005.0033.
  • [47] Zeng W, Xu C, Huang J, Wu J, Tuller M. Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model. Soil Sci Soc America J. 2016;80(6):1496-1506. DOI: 10.2136/sssaj2016.06.0188.
  • [48] Wigneron JP, Olioso A, Calvet JC, Bertuzzi P. Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling. Water Resour Res. 1999;35(12):3735-3745. DOI: 10.1029/1999WR900258.
  • [49] Li J, Islam S. Estimation of root zone soil moisture and surface fluxes partitioning using near surface soil moisture measurements. J Hydrol. 2002;259(1):1-14. DOI: 10.1016/S0022-1694(01)00589-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f263daf-ca58-4d1b-8d85-e69563f5825d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.