Warianty tytułu
Języki publikacji
Abstrakty
The destruction of rock under the condition of a close submerged jet has become a hot topic of scientific research and engineering application in the past decade. With the unremitting efforts of a large number of experts and scholars around the world, gratifying progress has been made in the research of computational fluid dynamics (CFD) on the internal and external flow fields of the jet nozzle, the theoretical derivation of rock mechanics on the fracture initiation and propagation criteria of hydraulic fracturing, and the numerical simulation of jet erosion mechanism under the coupling of fluid and solid fields, however, for the rock mechanics hydraulic fracturing cutting engineering scale of non-oil drilling fracturing technology, the research on the fluid-solid coupling boundary conditions of fracturing fluid and hard dense rock under the flow state conditions of the submerged field inside and outside the borehole is not sufficient. In the calculation of the fluid-solid coupling boundary flow field under the non-submerged jet state, the control equation with Reynolds number between 2300-4000 shall be selected, while it belongs to the laminar flow state in the stage of hole sealing and pressurised fracturing. Therefore, Von-Mises equivalent plastic stress is selected in the mechanical model to calibrate the failure state of the rock-solid boundary, and the control equations of laminar flow and turbulent flow are selected to calibrate the fluid boundary. The mechanism of different stages of rock breaking by hydraulic fracturing jet can be further analysed in detail, and Comsol 6.0 multi-physical field simulation software is selected for verification. The research results will help deepen the understanding of rock breaking mechanism by jet and optimise the selection of parameters for field construction.
Czasopismo
Rocznik
Tom
Strony
115--125
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- Lyuliang University, Department of Mining Engineering, Lvliang, Shanxi 033001, China, cumtshilei@163.com
autor
- Lyuliang University, Department of Mining Engineering, Lvliang, Shanxi 033001, China
- Lvliang Engineering Research Center of Intelligent Coal Mine, Lvliang, Shanxi 033001, China
autor
- Inner Mongolia Energy Group Co., Ltd., Hohhot, Inner Mongolia 010090, China
- Inner Mongolia Tongsheng Selian Coal Development Co., Ltd. Ordos, Inner Mongolia 014399, China
Bibliografia
- [1] M.K. Hubbert, D. Willis, Mechanics of hydraulic fracturing. Transactions of the AIME 18 (1), (1972).DOI: https://doi.org/10.1146/annurev-fluid-010814-014736.
- [2] A. Ellsworth, L. William, Injection-Induced Earthquakes. Science, (2013).DOI: https://doi.org/10.1126/science.1225942.
- [3] Jiang Ruizhong, Jiang Tingxue, & Wang Yongli, The recent development and prospects of hydraulic fracturingtechnology Petroleum Drilling and Production Technology 26 (004), 52-57 (2004).
- [4] V .E. Johnson, G.L. Chahine, A.F. Conn et al., Cavitating and Structured Jets for Mechanical Bits to Increase DrillingRate – Part I: Theory and Concepts. Journal of Energy Resources Technology 106 (2), (1984).DOI: https://doi.org/10.1115/1.3231053.
- [5] J.I. Adachi, E. Siebrits, A.P. Peirce et al., Computer simulation of hydraulic fractures. International Journal of RockMechanics and Mining Sciences 44 (5), 739-757 (2007).DOI: https://doi.org/10.1016/j.ijrmms.2006.11.006.
- [6] W.D. Norman, R.J. Jasinski, E.B. Nelson, Hydraulic fracturing process and compositions. US (1996).
- [7] R.Z. Jiang, T.X. Jiang, Y.L. Wang, Recent development and Prospect of hydraulic fracturing technology. PetroleumDrilling and Production Technology (04), 52-57 + 84 (2004). DOI: https://doi.org/10.13639/j.odpt.2004.04.019.
- [8] J. Wang, G. Li, H. Zhao et al., Stability Analysis of a Borehole Wall during Horizontal Directional Drilling in Fluid-Solid Coupling Condition. Chinese Journal of Underground Space and Engineering (2012).DOI: https://doi.org/10.1016/j.tust.2007.01.002.
- [9] J. Liu, Study of fluid-solid coupling flow in low permeablable oil reservoir. Chinese Journal of Rock Mechanicsand Engineering 21 (1), 88-92. DOI: https://doi.org/10.1016/S0731-7085(02)00079-1.
- [10] Y .H. Bu, R.H. Wang, W.D. Zhou, Study on the flow law of rotating jet. Petroleum Drilling and Production Technology(02), 7-10 + 105 (1997). DOI: https://doi.org/10.13639/j.odpt.1997.02.002.DOI: https://doi.org/10.1007/BF03182422.
- [11] S.P. Raju, M. Ramulu, Predicting hydro-abrasive erosive wear during abrasive waterjet cutting (1994).DOI: https://doi.org/10.3390/en15062028.
- [12] N .A. Chigier, A. Chervinsky, Experimental Investigation of Swirling Vortex Motion in Jets. Journal of AppliedMechanics 34 (2) (1967). DOI: https://doi.org/10.1115/1.3607703.
- [13] Y .F. Wang, Research on three-dimensional rotating water jet combined with hydraulic fracturing technology. ChinaUniversity of Mining and Technology (2015). DOI: https://doi.org/10.1515/jag-2019-0032.
- [14] K.J. Bathe, Z. Hou, S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions. Computers& Structures 72 (1-3), 1-16 (1999). DOI: https://doi.org/10.1016/S0045-7949(99)00042-5.
- [15] H .G. Choi, D.D. Joseph, Abstract Fluidization by lift of 300 circular particles in plane Poiseuille flow by directnumerical simulation. Journal of Fluid Mechanics 438, 101-128 (2001).DOI: https://doi.org/10.1017/S0022112001004177.
- [16] B.E. Launder et al., The numerical computation of turbulent flows – ScienceDirect. Computer Methods in AppliedMechanics and Engineering 3 (2), 269-289 (1974). DOI: https://doi.org/10.1016/j.jweia.2008.01.011.
- [17] Y . Lu, J. Tang, Z. Ge, B. Xia, Y. Liu, Hard rock drilling technique with abrasive water jet assistance. InternationalJournal of Rock Mechanics & Mining Sciences 60, 47-56 (2013).
- [18] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G.W. Hammett et al., Comparisons and physicsbasis of tokamak transport models and turbulence simulations. Physics of Plasmas 7 (3), 969-983 (2000).
- [19] Y . He, W. Ma, C. Liu, Numerical Simulation on CFD of Flow Field in Hydrodynamic Coupling and CharacteristicsPrediction. Asia-pacific Power & Energy Engineering Conference. IEEE (2009).
- [20] T.J, Poinsot et al., Boundary conditions for direct simulations of compressible viscous flows. Journal of ComputationalPhysics (1992). DOI: https://doi.org/10.1016/j.jcp.2008.01.0381. Y. Zhang, S.Y. Liu, B.G. Wang, Application of Reynolds stress model in three-dimensional turbulent flow field calculation.Journal of Aeronautical dynamics (04), 572-576 (2005). DOI: https://doi.org/10.13224/j.cnki.jasp.2005.04.00.
- [21] Y .D. Li, Y. B. Cai, Y.L. Zhang, W.F. Sun, Optimization of nozzle structure of three-dimensional rotary jet gun.Hydraulic and Pneumatic (10), 40-43 (2015). DOI: https://doi.org/10.20964/2020.09.37.
- [22] M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase systems: 1. Averaging procedure.Advances in Water Resources 3 (1), 25-40 (1979). DOI: https://doi.org/10.1016/ j.jcp.2008.01.038.
- [23] W. Zhang, J. Sun, Z.Q. Qu, T.K, Guo, F.C. Gong, H.Y. Zhang, Thermal fluid solid coupling model and comprehensiveevaluation method for high temperature geothermal exploitation. Progress in Geophysics 34 (02), 668-675(2019). DOI: https://doi.org/10.3901/CJME. 2014.0529.107.
- [24] G .S. Li, Z.H. Shen, Research progress of high pressure water jet theory and its application in petroleum engineering.Petroleum Exploration and Development (01), 96-99 (2005). DOI: https://doi.org/10.1155/2021/6647500.
- [25] A.W. Momber, R. Kovacevic, Principles of Abrasive Water Jet Machining. Springer London (1998).
- [26] J.W. Hoyt, J.J, Taylor, Turbulence structure in a water jet discharging in air. Physics of Fluids 20 (10), S253-S257(2008). DOI: https://doi.org/10.1063/1.861738.
- [27] Y . Hu, A.Y. Cao, X.F. Qin, C.C, Xue, W.H. Guo, Y.Q. Liu, Y.J, Peng, Study on Optimization of water jet slit pressurerelief parameters in deep rock burst coal seam. Journal of Geotechnical Engineering 1-8 (2022-08-18).http:// kns.cnki.net/kcms/detail/ 32.1124. TU. 20220817. 1359.004. html.
- [28] T. Orlando, C. Valentina, V, Marco, Equation-Based Modelling: True Large Strain, Large Displacement and Anand’sPlasticity Model with The ComSol Deformed Mesh Module// European COMSOL Conference 2009. COMSOLInc. (2009). International Symposium on Plasticity and Impact Mechanics.
- [29] P. Franciosa, S. Gerbino, Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in ComsolMultiphysics// Comsol 2009. International Symposium on Plasticity and Impact Mechanics.
- [30] R.G. Hou, Wang, Z. Lv, Y.B. Tian, Numerical simulation of magnetic field assisted abrasive water jet flow fielddistribution based on COMSOL. Aerospace Manufacturing Technology 62 (18), 43-49 (2019).DOI: https://doi.org/10.16080/j.issn1671-833x.2019.18.043.
- [31] M. Chen, Z.X. Chen, R.Z. Huang, Three dimensional bending hydraulic fracture mechanical model and calculationmethod. Journal of Petroleum University (Natural Science Edition) (S1), 43-47 (1995).DOI: https://doi.org/10.1016/j.ijrmms.2018.01.010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f1d17d9-09ee-4335-b10e-7c7ccade9206