Czasopismo
2014
|
Vol. 34, Fasc. 2
|
317--336
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We propose new data driven score rank tests for univariate symmetry about an unknown center. We construct test statistics, state assumptions and define estimators of nuisance parameters. We prove that the test statistics are asymptotically distribution-free under the null hypothesis. Using simulations, we verify these asymptotic results for finite samples and show that, under the assumptions and when they are somewhat violated, the size of the test is stable when changing the null distribution. We also compare the empirical behaviour of the new tests with those proposed in the literature. We show that for families of distributions commonly applied to model asymmetry the new tests overcome their competitors on average and for most individual alternatives.
Czasopismo
Rocznik
Tom
Strony
317--336
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 54-404 Wrocław, Poland, Tadeusz.Inglot@pwr.edu.pl
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 54-404 Wrocław, Poland, Alicja.Janic@pwr.edu.pl
Bibliografia
- [1] P. K. Bhattacharya, J. L. Gastwirth, and A. L. Wright, Two modified Wilcoxon tests for symmetry about an unknown location parameter, Biometrika 69 (1982), pp. 377-382.
- [2] P. J. Bickel, C. A. Klaassen, Y. Ritov, and J. A. Wellner, Efficient and Adaptive Estimation for Semiparametric Models, Johns Hopkins Univ. Press, Baltimore 1993.
- [3] P. Cabilio and J. Masaro, A simple test of symmetry about an unknown median, Canad. J. Statist. 24 (1996), pp. 349-361.
- [4] K. A. Doksum, Measures of location and asymmetry, Scand. J. Statist. 2 (1975), pp. 11-22.
- [5] K. A. Doksum, G. Fenstad, and R. Aaberge, Plots and tests for symmetry, Biometrika 64 (1977), pp. 473-487.
- [6] M. Ekström and S. R. Jammalamadaka, An asymptotically distribution-free test of symmetry, J. Statist. Plann. Inference 137 (2007), pp. 799-810.
- [7] M. Ekström and S. R. Jammalamadaka, A general measure of skewness, Statist. Probab. Lett. 82 (2012), pp. 1559-1568.
- [8] M. Fernandes, E. F. Mendes, and O. Scaillet, Testing for symmetry and conditional symmetry using asymmetric kernels, HEC Genève DP 2011.01 and Swiss Finance Institute DP2011.32, 2011.
- [9] J. Forrester, W. Hooper, H. Peng, and A. Schick, On the construction of efficient estimators in semiparametric models, Statist. Decisions 21 (2003), pp. 109-138.
- [10] M. Freimer, G. Kollia, G. S. Mudholkar, and C. T. Lin, A study of the generalized Tukey lambda family, Comm. Statist. Theory Methods 17 (1988), pp. 3547-3567.
- [11] J. L. Gastwirth, On the sign test of symmetry, J. Amer. Math. Soc. 66 (1971), pp. 821-823.
- [12] K. Ghosh, A new nonparametric test of symmetry, in: Advances in Directional and Linear Statistics, M. T. Wells and A. Sen Gupta (Eds.), Physica-Verlag HD, Springer, Berlin-Heidelberg 2011, pp. 69-83.
- [13] M. K. Gupta, An asymptotically nonparametric test of symmetry, Ann. Math. Statist. 38 (1967), pp. 849-866.
- [14] H. E. T. Holgerson, A modified skewness measure for testing asymmetry, Comm. Statist. Simulation Comput. 39 (2010), pp. 335-346.
- [15] T. Inglot and A. Janic, How powerful are data driven score tests for uniformity, Appl. Math. (Warsaw) 36 (2009), pp. 375-395.
- [16] T. Inglot and A. Janic, Data driven tests for univariate symmetry about unknown median, Technical Report, Institute of Mathematics and Computer Science, Wrocław University of Technology, 2014.
- [17] T. Inglot, A. Janic, and J. Józefczyk, Data driven tests for univariate symmetry, Probab. Math. Statist. 32 (2) (2012), pp. 323-358.
- [18] T. Inglot, A. Janic, and J. Józefczyk, Data driven tests for univariate symmetry about unknown median. A simulation study, Technical Report No. I-18/2013/P-049, Institute of Mathematics and Computer Science, Wrocław University of Technology, 2013.
- [19] T. Inglot and T. Ledwina, Data-driven score tests for homoscedastic linear regression model: Asymptotic results, Probab. Math. Statist. 26 (1) (2006), pp. 41-61.
- [20] T. Inglot and T. Ledwina, Data driven score tests for homoscedastic linear regression model, Preprint 665, Institute of Mathematics of the Polish Academy of Sciences, 2006.
- [21] J. Józefczyk, Data driven score tests for univariate symmetry based on non-smooth functions, Probab. Math. Statist. 32 (2) (2012), pp. 301-322.
- [22] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, Springer, 2005.
- [23] A. Mira, Distribution-free test for symmetry based on Bonferroni’s measure, J. Appl. Stat. 26 (1999), pp. 959-972.
- [24] R. Modarres and J. L. Gastwirth, Hybrid test for the hypothesis of symmetry, J. Appl. Stat. 25 (1998), pp. 777-783.
- [25] R. H. Randles, M. A. Flinger, G. E. Policello II, and D. A. Wolfe, An asymptotically distribution-free test for symmetry versus asymmetry, J. Amer. Statist. Assoc. 75 (1980),pp. 168-172.
- [26] G. Sansone, Orthogonal Functions, Interscience, New York 1959.
- [27] A. Schick, On asymptotic differentiability of averages, Statist. Probab. Lett. 51 (2001), pp.15-23.
- [28] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), pp. 461-464.
- [29] T. Zheng and J. L. Gastwirth, On bootstrap tests of symmetry about an unknown median, J. Data Sci. 8 (2010), pp. 397-412.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f1a409c-64cb-46f0-af67-a182dff1142a