Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 20, Fasc. 2 | 343--358
Tytuł artykułu

Existence and non-existence of solutions of one-dimensional stochastic equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the one-dimensional stochastic equation [formula] for a continuous local martingale M with square variation [M] and measurable drift and diffusion coefficients b and σ. The main purpose of this paper is to derive a necessary condition for the existence of a solution X starting from x0. As a result, we construct a diffusion coefficient σ such that the above stochastic equation has no solution X whatever the initial value x0 and the non-zero, say, continuous drift coefficient b might be.
Wydawca

Rocznik
Strony
343--358
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
Bibliografia
  • [1] A. S. Cherny and H. J. Engelbert, Isolated singular points of stochastic differential equations, Preprint, February 2000.
  • [2] C. Dellacherie, Capacites et processus stochastiques, Springer, 1972.
  • [3] H. J. Engelbert and W. Schmidt, On solutions of one-dimensional stochastic differential equations without drift, Z, Wahrsch. verw. Gebiete 68 (1985), pp. 287-314.
  • [4] H. J. Engelbert and W. Schmidt, On one-dimensional stochastic differential equations with generalized drift, Lecture Notes in Control and Inform. Sei. 69 (1985), pp. 143-155.
  • [5] H. J. Engelbert and W. Schmidt, Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, Part III, Math. Nachr. 151 (1991), pp. 149-197.
  • [6] J. Jacod and J. Mémin, Existence of weak solutions for stochastic differential equations with driving semimartingales, Stochastics 4 (1981), pp. 317-337.
  • [7] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin 1991.
  • [8] M. Rutkowski, Strong solutions of stochastic differential equations involving local times, Stochastics 22 (1987), pp. 201-218.
  • [9] M. Rutkowski, Fundamental solutions of stochastic differential equations with drift, Stochastics and Stochastics Reports 26 (1989), pp. 193-204.
  • [10] M. Rutkowski, On solutions of stochastic differential equations with-drift, Probab. Theory Related Fields 85 (1990), pp. 387-402.
  • [11] W. Schmidt, On stochastic differential equations with reflecting barriers, Math. Nachr. 142 (1989), pp. 135-148.
  • [12] A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley, Reading, Massachusetts, 1965.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9f173510-2dc0-49c6-ada1-baffd9fa422e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.