Warianty tytułu
Poprawa odporności na pękanie gęstych kompozytów ATZ wytworzonych z proszków cyrkonu o różnej zawartości itru
Języki publikacji
Abstrakty
Alumina toughened zirconia (ATZ) composites with 2.3 vol.% Al2O3 (ATZ-B) and 12.3 vol.% Al2O3 (ATZ-10) were fabricated. The used starting zirconia powders were prepared as a mixture of powders with different yttria content. The alumina additive was commercially available Al2O3 powder. The specific preparation method and optimized sintering conditions allowed us to achieve ATZ products with exceptional properties. These properties were compared with 3Y-TZP sintered samples prepared from commercial powder (Tosoh). The structural and mechanical properties of the investigated ATZ composites were systematically studied. The microstructures were observed by scanning electron microscopy (SEM) on polished and thermally etched surfaces, then the micrographs were binarized and subjected to stereological analysis. Dense (> 99% of relative density), uniform and pore-free microstructures with homogeneously distributed Al2O3 inclusions without any visible agglomerates were obtained. The Vickers hardness and Young’s modulus were enhanced according to the rule of mixtures for the composites. The mechanical behaviour was especially oriented towards increasing the fracture toughness. The K1c parameter reached the extraordinary value of 12.MPa⋅m1/2 for ATZ-B and 9.8 MPa⋅m1/2 for ATZ-10. Comparatively, K1c of the 3Y-TZP reference material was 5.1 MPa⋅m1/2. The mechanisms contributing to the increase in K1c were identified to explain the reason for such a large improvement in the fracture toughness. The investigations were particularly focused on crack propagation analysis. The identified mechanisms include crack path deviation and mixed transgranular-intragranular crack migration (crack bridging), crack propagation through the Al2O3 grains and frequent changes in the fracture propagation directions of a high angle (close to even 90°). Nevertheless, the occurrence of t→m (tetragonal to monoclinic) transformation of the ZrO2 phase was considered to be the main toughening factor. Due to the specific method of preparation, leading to an intensification of yttrium diffusion during sintering, the final microstructure revealed very small grains of a tetragonal zirconia phase. These grains exhibited high transformability, which was the main reason for the distinctin crease in fracture toughness.
Czasopismo
Rocznik
Tom
Strony
161--168
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- IEN Institute of Power Engineering, ul. Mory 8, 01-330 Warsaw, Poland, Ceramic Branch CEREL, ul. Techniczna 1, 36-040 Boguchwała, Poland, grabowy@cerel.pl
autor
- AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories al. A. Mickiewicza 30, 30-059 Krakow, Poland, wilka@agh.edu.pl
autor
- AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Garvie R.C., Hannink R.H., Pascoe R.T., Ceramic steel? Nature 1975, 258, 703-704.
- [2] Kelly J.R., Denry I., Stabilized zirconia as a structural ceramic: an overview, Dent. Mater. 2008, 24, 289-298.
- [3] Bhattacharyya S., Agrawal D.C., Microstructure and mechanical properties of ZrO2-Gd2O3 tetragonal polycrystals, Mater. Sci. 2002, 37, 7, 1387-1394.
- [4] Lee D.Y., Kim D., Cho D., Low-temperature phase stability and mechanical properties of Y2O3- and Nb2O5-co-doped tetragonal zirconia polycrystal ceramics, Mater. Sci. 1998, 17, 3, 185-187.
- [5] Khor K.A., Yang J., Lattice parameters, tetragonality (c/a) and transformability of tetragonal zirconia phase in plasma sprayed ZrO2-Er2O3 coatings, Mater. Lett. 1997, 31, 23-27.
- [6] Denry I., Kelly J.R., State of the art of zirconia for dental applications, Dental Materials 2008, 24, 3, 299-307, DOI: 10.1016/j.dental.2007.05.007.
- [7] Piconi C., Maccauro G., Zirconia as a ceramic biomaterial, Biomaterials 1999, 20, 1, 1-25, DOI: 10.1016/s0142-9612(98)00010-6.
- [8] Nevarez-Rascon A., Aguilar-Elguezabal A., Orrantia E., Bocanegra-Bernal M.H., Compressive strength, hardness and fracture toughness of Al2O3 whiskers reinforced ZTA and ATZ nanocomposites: Weibull analysis, Int. J. Refract. Met. Hard. Mater. 2011, 29, 3, 333-340, DOI: 10.1016/j.ijrmhm.2010.12.008.
- [9] Correa de Sá e Benevides de Moraes M.C., Benavides de Moraes S., Elias C.N., Filho J., Guimarães de Oliveira L., Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater. Research 2004, 7, 4, 643-649.
- [10] De Aza A.H., Chevalier J., Fantozzi G., Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 2002, 23, 937-945.
- [11] Hamadouche M., Sedel L., Ceramics in orthopaedics, J. Bone Jt. Surg. Br. 2000, 82, 1095-1099, DOI: 10.1302/0301-620X.82B8.11744.
- [12] Shekhawat D., Singh A., Banerjee M.K., Singh T., Patnaik A., Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties, Ceramics Int. 2021, 47, 3, 3013-3030, DOI: 10.1016/j.ceramint.2020.09.214.
- [13] Uhlířová T., Pabst W., Phase mixture modeling of the grain size dependence of Young’s modulus and thermal conductivity of alumina and zirconia ceramics, J. Eu. Ceram. Soc. 2020, 40, 8, 3181-3190, DOI: 10.1016/j.jeurceramsoc.2020.01.069.
- [14] Nevarez-Rascon A., Aguilar-Elguezabal A., Orrantia E, Bocanegra-Bernal M.H., On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content, Int. J. Refract. Met. Hard. Mater. 2009, 27, 6, 962-970, DOI: 10.1016/j.ijrmhm.2009.06.001.
- [15] Danilenko I., Konstantinova T., Volkova G., Burkhovetski V., Glazunova V., The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount, J. Ceram. Sci. and Tech. 2015, 06, 3, 191-200.
- [16] Abbas M.K.G., Ramesh S., Sara Lee K.Y., Wong Y.H., Ganesan P., Ramesh S., Alengaram U.J., Treng W.D., Purbolaksono J., Effects of sintering additives on the densification and properties of alumina-toughened zirconia ceramic composites, Ceram.- Int. 2020, 46, 27539-27549.
- [17] Gregorová E., Semrádová L., Sedlářová I., Nečina V., Hříbalová S., Pabst W., Microstructure and Young’s modulus evolution during resintering of partially sintered alumina-zirconia composites (ATZ ceramics), J. Eu. Ceram. Soc. 2021, 41, 6, 3559-3569, DOI: /10.1016/j.jeurceramsoc.2021.01.045.
- [18] Kern F., Gadolinia neodymia co-stabilized zirconia materials with high toughness and strength, J. Ceram. Sci. Tech. 2012, 3, 3, 119-130, 10.4416/JCST2012-00004.
- [19] Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B., A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc. 1981, 64, 533-543, DOI: 10.1111/j.1151-2916.1981.tb10320.x.
- [20] Ying S., Rhee Y., Kang S., Experimental evaluation of toughening mechanism in alumina-zirconia composites, J. Am. Ceram. Soc. 1999, 82, 5, 1229-1232.
- [21] Tuan W.H., Chen R.Z., Wang T.C., Cheng C.H., Kuo P.S., Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc. 2002, 22, 16, 2827-2833.
- [22] Hannink R.H.J., Kelly P.M., Muddle B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc. 2000, 83, 3, 461-487.
- [23] Karihaloo B.L. Contributions of t–m phase transformation to the toughening of ZTA. J. Am. Ceram. Soc. 1991, 74, 1703-1706, DOI: 10.1111/j.1151-2916.1991.tb07166.x.
- [24] Rühle M., Stecker A., Waidelich D., Kraus B., In situ observations of stress-induced phase transformation in ZrO2 containing ceramics. In: Claussen N., Rühle M., Heuer A., Advances in ceram., Sci. and Tech. of Zirconia II. Columbus: Am. Ceram. Soc. 1984, 256, 74.
- [25] Green D.J., Critical microstructures for microcracking in Al2O3-ZrO2 composites, J. Am. Ceram. Soc. 1982, 65, 610-614.
- [26] Celli A., Tucci A., Esposito L., Palmonari C., Fractal analysis in alumina-zirconia composites, J. Eur. Ceram. Soc. 2003, 23, 469-479.
- [27] Magnani G., Brillante A., Effect of the composition and sintering process on mechanical properties and residua stresses in zirconia-alumina composites, J. Eu. Ceram. Soc. 2005, 25, 15, 3383-3392, DOI: 10.1016/j.jeurceramsoc.2004.09.025.
- [28] Tekeli S., Fracture toughness (K1C), hardness, sintering and grain growth behaviour of 8YSCZ/Al2O3 composites produced by colloidal processing, J. Alloys and Compounds 2005, 391, 1-2, 217-224, DOI: 10.1016/j.jallcom.2004.08.084.
- [29] Chai J., Zhu Y., Shen T., Liu Y., Niu L., Li S., Jin P., Cui M., Wang Z., Assessing fracture toughness in sintered Al2O3-ZrO2(3Y)-SiC ceramic composites through indentation technique, Ceramics Int. 2020, 46, 17, 27143-27149, DOI: 10.1016/j.ceramint.2020.07.194.
- [30] Liu H.L., Huang C.Z., Teng X.Y., Wang H., Effect of special microstructure on the mechanical properties of nanocomposite, Mater. Sci. Eng. 2008, 487, 258-263.
- [31] Sun X.D., Li J.G., Zhang M., Li X.D., Xiao Y.L., Liang Y., Mechanism of strengthening of Al2O3/SiC nanocomposites, Acta Metall. Sin. 1999, 35, 879-882.
- [32] Grabowy M., Wilk A., Lach R., Pędzich Z., Hydrothermal aging of ATZ composites based on zirconia made of powders with different yttria content, Materials 2021, 14, 6418, DOI: 10.3390/ma14216418.
- [33] Cheng M., Chen W., Measurement and determination of dynamic biaxial flexural strength of thin ceramic substrates under high stress-loading, Int. J. Mech. Sci. 2005, 47, 1212-1223, DOI: 10.1016/j.ijmecsci.2005.04.004.
- [34] Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates, ASTM F394-78, 1996.
- [35] Dudek A., Lach R., Wojteczko K., Rutkowski P., Zientara D., Pędzich Z., Subcritical crack growth in oxide and non-oxide ceramics using the Constant Stress Rate Test, Process. App. Ceram. 2015, 9, 4, 187-191, DOI: 10.2298/PAC1504187W.
- [36] Niihara K., A fracture mechanics analysis of indentation-induced Palmqvist crack inceramics, J. Mater. Sci. Lett. 1983, 2, 221-223.
- [37] Maji A., Choubey G., Microstructure and mechanical properties of alumina toughened zirconia (ATZ), Mater. Today 2018, 5, 2, 7457-7465, DOI: 10.1016/j.matpr.2017.11.417.
- [38] Sequeira S., Fernandes M.H., Neves N., Almeida M.M., Development and characterization of zirconia-alumina composites for orthopedic implants, Ceram. Int. 2017, 43, 1, 693-703.
- [39] Quinn G.D., Fracture toughness of ceramics by Vickers indentation crack length method: A critical review, Ceram. Eng. Sci. Proceed. 2006, 27, 3, 45-62.
- [40] Li J., Watanabe R., Fracture toughness of Al2O3-particle-dispersed Y2O3 partially stabilized zirconia, J. Am. Ceram. Soc. 1995, 78, 4, 1079-1082.
- [41] Faber K.T., Evans A.G., Crack deflection processes-I. Theory, Acta Metall. Mater. 1983, 31, 4, 165-176.
- [42] Evans A.G., Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc. 1990, 73, 2, 187-205.
- [43] Suresh S., Crack deflection: implications for the growth of long and short fatigue cracks, Metall Trans. A. 1983, 14, 2375-2385.
- [44] Bilby B.A., Cardew G.E., Howard I.C., Stress intensity factors at the tips of kinked and forked cracks. In: Taplin D.M.R. (ed.), Analysis and Mechanics, Pergamon, 1978, 197-200, DOI: 10.1016/B978-0-08-022142-7.50039-9.
- [45] Levin I., Kaplan W., Brandon D., Layyous A., Effect of SiC submicrometer particle size and content on fracture toughness of alumina-SiC “nanocomposites”, J. Am. Ceram. Soc.1995, 78, 1, 254-256.
- [46] Kwon N.-H., Kim G.-H., Song H.S., Lee H.-L., Synthesis and properties of cubic zirconia-alumina composite by mechanical alloying, Mater. Sci. Eng. A 2000, 299, 185-194, DOI: 10.1016/S0921-5093(00)01376-9.
- [47] Gil-Flores L., Salvador M.D., Penaranda-Foix F.I., D`almau A., Fernandez A., Borrell A., Tribological and wear behavior of alumina toughened zirconia nano-composites obtained by pressureless rapid microwave sintering, J. Mech. Behav. Biomed. Mater. 2019, 101, 103415, DOI: 10.1016/j.jmbbm.2019.103415.
- [48] Zhang F., Li L.F., Wang E., Effect of micro-alumina content on mechanical properties of Al2O3/3Y-TZP composites, Ceram. Int. 2015, 41, 12417-1242.
- [49] Casellas D., Rafols I., Llanes L., Anglada M., Fracture toughness of zirconia-alumina composites, Int. J. Refract. Met. Hard. Mater. 1999, 19, 11-20.
- [50] Huang X.W., Wang S.W., Huang X.X., Microstructure and mechanical properties of ZTA fabricated by liquid phase sintering, Ceram. Int. 2003, 29, 765-769.
- [51] Yoshimura M., Yashima M., Noma T., Somiya S., Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-RO1.5 systems (R = rare earths), J. Mater. Sci. 1990, 25, 4, 2011-2016.
- [52] Matsui K., Ohmichi N., Ohgai M., Enomoto N., Hojo J., Sintering kinetics at constant rates of heating: Effect of Al2O3 on the initial sintering stage of fine zirconia powder, J. Am. Ceram. Soc. 2008, 88, 12, 3346-3352.
- [53] Matsui K., Yoshida H., Ikuhara Y., Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina, J. Eur. Ceram. Soc. 2010, 30, 7, 1679-1690.
- [54] Guo X., Yuan R., Roles of alumina in zirconia-based solid electrolyte, Journal of Materials Science 1995, 30, 4, 923-931.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9ee71849-1054-41e8-835e-4afe3aaa0a48