Warianty tytułu
Języki publikacji
Abstrakty
We study integer partitions with respect to the classical word statistics of levels and descents subject to prescribed parity conditions. For instance, a partition with summands λ1≥⋯≥λk may be enumerated according to descents λi >λi+1 while tracking the individual parities of λi and λi+1. There are two types of parity levels, E=E and O=O, and four types of parity-descents, E>E, E>O, O>E and O>O, where E and O represent arbitrary even and odd summands. We obtain functional equations and explicit generating functions for the number of partitions of n according to the joint occurrence of the two levels. Then we obtain corresponding results for the joint occurrence of the four types of parity-descents. We also provide enumeration results for the total number of occurrences of each statistic in all partitions of n together with asymptotic estimates for the average number of parity-levels in a random partition.
Słowa kluczowe
Rocznik
Tom
Strony
123--140
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, Aubrey.Blecher@wits.ac.za
autor
- Department of Mathematics, University of Haifa, 3498838 Haifa, Israel, tmansour@univ.haifa.ac.il
autor
- School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, Augustine.Munagi@wits.ac.za
Bibliografia
- [1] G. E. Andrews, Parity in partition identities, Ramanujan J. 23 (2010), 45-90.
- [2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976; reissued: Cambridge Univ. Press, Cambridge, 1998.
- [3] G. E. Andrews, Ramanujan's “lost" notebook. IV. Stacks and alternating parity in partitions, Adv. Math. 53 (1984), 55-74.
- [4] C. Brennan, A. Knopfmacher and S. Wagner, The distribution of ascents of size d or more in partitions of n, Combin. Probab. Comput. 17 (2008), 495-509.
- [5] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theoret. Comput. Sci. 144 (1995), 3-58.
- [6] P. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J. 12 (2006), 439-454.
- [7] P. Grabner, A. Knopfmacher and S. Wagner, A general asymptotic scheme for the analysis of partition statistics, Combin. Probab. Comput. 23 (2014), 1057-1086.
- [8] P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8 (1941), 335-345.
- [9] A. Knopfmacher and N. Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- [10] A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math. 308 (2008), 2492-2501.
- [11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org/, 2006.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-9e9a05bd-a788-4007-b5ca-bb98c4c8b97c