Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 5 | 280--288
Tytuł artykułu

Investigation of Carbon Nanotube Particles Addition Effect on the Dispersed Composite Structure Thermal Diffusivity

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article addresses the issue of the possibility of improving the thermal transport parameters of an epoxy resin, such as thermal diffusivity (TD) and thermal conductivity (TC), by the addition of carbon nanotubes (CNT) as a high thermal conductivity filler. In the case presented here, the effect of the addition of high TC carbon nanotubes to commercial epoxy resin LH145 cured with H147 hardener was investigated experimentally. The main parameter studied was thermal diffusivity. Measurements were carried out for samples of epoxy resin and epoxy resin matrix composites with dispersed CNTs with a volume fraction of carbon nanotubes ranging from 1% to 6%. A modified Ångström temperature oscillation method was used to obtain TD. Basic measurements were performed in the temperature range from 20 ºC to 80 ºC while maintaining high temperature resolution that allows to observe the TD changes with the temperature change. During extended temperature range additional differential scanning calorimetry studies, the effects after curing of the epoxy resin were also characterized. As a result, the temperature dependence of thermal conductivity was determined and data for determining thermal conductivity was obtained. However, the analysis of the obtained results did not show a significant dependence of the studied parameters on the amount of CNT additive for the studied compositions.
Wydawca

Rocznik
Strony
280--288
Opis fizyczny
BIbliogr. 24 poz., fig., tab.
Twórcy
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland, lukasz.omen@wat.edu.pl
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland, r.szczepaniak@law.mil.pl
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland, andrzej.panas@wat.edu.pl
Bibliografia
  • 1. Baker A., Dutton D, Kelly D., Composite Materials for Aircraft Structure, AIAA, Reston VA, 2004.
  • 2. Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Polymer composite materials: A comprehensive review, Composite Structures, 2021, 262, 1–15.
  • 3. Saba N., Jawaid M., Alothman OY., Tahir P.M., Recent advances in epoxy resign, natural fiber reinforced epoxy composites and its applications, Journal of Reinforced Plastics and Composites, 2015, 35(6), 447–470.
  • 4. Wiśniewski S., Heat loads of turbine engines (in Polish), WKiŁ, 1974.
  • 5. Panas A.J, Talkowski M., Investigation of directional thermal diffusivity for graphite composite. 42nd International Scientific Congress on Powertrain and Transport Means European KONES, 2016, 23(4), 715–720.
  • 6. Mydin M., The Potential of Sisal Fiber as an Additive in Lightweight Foamed Concrete for Thermal Properties Enhancement, Advances in Science and Tehnology Research Journal, 2022, 16(3), 89–97.
  • 7. Frusteri F., Leonardi V., Vasta S., Restuccia G., Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Applied Thermal Engineering, 2005, 25, 1623–1633.
  • 8. Kubit K., Bucior M., Kluz R., Ochałek K., Burnat K., Effect of nanofillers on the mechanical properies of vinyl ester resign used as a carbon fiber reinforces polymer matrix. Advances in Science and Tehnology Research Journal, 2022, 16(4), 10–21.
  • 9. Pieniak D., Gauda K., Identation Hardness and Tribological Wear under the Conditions of Sliding Friction of the Surface Layer of Composites Based of Methacrylate Resign with Ceramic Nanofiller, Advances in Science and Tehnology Research Journal, 2022, 14(2), 112–119.
  • 10. Korpyś M., Dzido G., Al-Rashed M.H., Wójcik J., Experimental and numerical study on heat transfer intensification in turbulent flow of CuO–water nano-fluids in horizontal coil, Chemical Engineering and Processing: Process Intensification, 2020, 153, 1–9.
  • 11. Olewnik-Kruszkowska E., Chrzanowska E., Structural and Thermal Proferties of Nanocompositesbased on Polyolefins and Montmorillonite Modified with Ehyl- 2-aminobenzoate, Advances in Science and Technology Research Journal, 2022, 11(3), 233–239.
  • 12. Wang N., Zhang X.R., Zhu D.S., Gao J.W., The investigation of thermal conductivity and Energy storage properties of graphite/paraffin composites, Journal of Thermal Analysis and Calorimetry, 2012, 107(3), 949–954.
  • 13. Alizadeh A., Application of Nanoprarticles in the Process of Phase Change Paraffin in a Chamber, Advances in Science and Technology Research Journal, 2019, 13(3), 113–119.
  • 14. Rathinavel S., Priyadharshini K., Panda D., A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application, Material Science & Engineering B, 2021, 268, 1–28.
  • 15. Wiśniewski S., Thermodynamics (Termodynamika techniczna), WNT, 1980.
  • 16. Belling J.M., Umsworth J., Modified Ångström’s method for measurement of thermal diffusivity of materials with low conductivity, Review of Scientific Instruments, 1987, 58, (6), 997–1002.
  • 17. Ångström A.J., Neue Methode, das Warmeleitungsvermogen der Koper zu Bestimmen, Annalen der Physik und Chemie, 1861,114, 513–530.
  • 18. Panas A.J., IR Support of thermophysical property investigation – study of medical and advanced technology materials, Infrared Thermography, Edited by Dr. Raghu V. Prakash, 2012.
  • 19. [19] Volokhov G.M., Kasperovich A.S.: Monotonic heating regime methods for the measurement of thermal diffusivity. In: Compendium of Thermophysical Property Methods, Ed Maglić K.D., Cezairliyan A., Petelsky V.E., Plenum Press, New York, 1984.
  • 20. Wendlandt W. Wm.: Thermal Analysis, John Willey & Sons, New York, 1986.
  • 21. Panas A.J., Panas D., DSC Investigation of Binary Iron-Nickel Alloys, High Temperatures-High Pressures, 2008, 38, 63–78.
  • 22. Panas A.J., B-spline Approximation of DSC Data of Specific Heat of NiAl and NiCr Alloys, Archives of Thermodynamics, 2003, 24(4), 1–19.
  • 23. Panas A.J., Comparative-complementary investigations of thermophysical properties – high thermal resolution procedures. In: Practice in Thermophysics, 2010, Brno University of Technology, Faculty of Chemistry, 2010.
  • 24. Badgayan N.D., Sahu S.K., Samanta S., Sreekanth P.S.R., Evaluation of dynamic mechanical and thermal behaviorof HDPE reinforced with MWCNT/h- BNNP: An attempt to find possible substitute for a metallic knee in transfemoral prosthesis. International Journal of Thermophysics, 2019, 40(10), 1–20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9e4055f1-186b-4436-9646-ba420856c2c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.