Warianty tytułu
Języki publikacji
Abstrakty
The method of reduction of a Fredholm integral equation to the linear system is generalized to construction of a complex potential - an analytic function in an unbounded multiply connected domain with a simple pole at infinity which maps the domain onto a plane with horizontal slits. We consider a locally sourceless, locally irrotational flow on an arbitrary given n-connected unbounded domain with impermeable boundary. The complex potential has the form of a Cauchy integral with one linear and n logarithmic summands. The method is easily computable.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
209--217
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
- Lobachevskiy Institute of Mathematics & Mechanics, Kazan Federal University, Kremlevskaya st. 35, Kazan, 420008, Russia, pivanshi@yandex.ru
Bibliografia
- [1] D. F. Abzalilov and E. A. Shirokova, The approximate conformal mapping onto simply and doubly connected domains, Complex Var. Elliptic Equ. 62 (2017), no. 4, 554-565.
- [2] N. I. Achieser, Theory of Approximation, Frederick Ungar, New York, 1956.
- [3] U. Böttger, B. Plümper and R. Rupp, Complex potentials, J. Math. Anal. Appl. 234 (1999), no. 1, 55-66.
- [4] D. Crowdy and J. Marshall, Conformal mappings between canonical multiply connected domains, Comput. Methods Funct. Theory 6 (2006), no. 1, 59-76.
- [5] T. K. DeLillo, On some relations among numerical conformal mapping methods, J. Comput. Appl. Math. 19 (1987), no. 3, 363-377.
- [6] T. K. DeLillo, The accuracy of numerical conformal mapping methods: a survey of examples and results, SIAM J. Numer. Anal. 31 (1994), no. 3, 788-812.
- [7] F. D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford, 1966.
- [8] P. N. Ivanshin and E. A. Shirokova, Approximate conformal mappings and elasticity theory, J. Complex Anal. 2016 (2016), Article ID 4367205.
- [9] L. A. Lyusternik and V. I. Sobolev, The Elements of Functional Analysis, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1951.
- [10] A. H. M. Murid and L.-N. Hu, Numerical conformal mapping of bounded multiply connected regions by an integral equation method, Int. J. Contemp. Math. Sci. 4 (2009), no. 21-24, 1121-1147.
- [11] M. M. S. Nasser, A. H. M. Murid and A. W. K. Sangawi, Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel, TWMS J. Pure Appl. Math. 5 (2014), no. 1, 96-117.
- [12] A. W. K. Sangawi, A. H. M. Murid and M. M. S. Nasser, Annulus with circular slit map of bounded multiply connected regions via integral equation method, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 945-959.
- [13] R. Schinzinger and P. A. A. Laura, Conformal Mapping, Dover, Mineola, 2003.
- [14] E. A. Shirokova, On the approximate conformal mapping of the unit disk on a simply connected domain, Russian Math. (Iz. VUZ) 58 (2014), no. 3, 47-56.
- [15] R. Wegmann, Fast conformal mapping of multiply connected regions, J. Comput. Appl. Math. 130 (2001), no. 1-2, 119-138.
- [16] R. Wegmann, Methods for numerical conformal mapping, in: Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, Elsevier Science, Amsterdam (2005), 351-477.
- [17] R. Wegmann and M. M. S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions, J. Comput. Appl. Math. 214 (2008), no. 1, 36-57.
- [18] A. A. M. Yunus, A. H. M. Murid and M. M. S. Nasser, Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), no. 2162, Article ID 20130514.
- [19] A. A. M. Yunus, A. H. M. Murid and M. M. S. Nasser, Numerical evaluation of conformal mapping and its inverse for unbounded multiply connected regions, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 1, 1-24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9e0e0c30-a5ba-4b5e-9beb-7d9529cf7e54