Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 44, no. 1 | 95--104
Tytuł artykułu

Imaging the retinal and choroidal vasculature using Spatio-Temporal Optical Coherence Tomography (STOC-T)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatio-Temporal Optical Coherence Tomography (STOC-T) is a novel imaging technique using light with controlled spatial and temporal coherence. Retinal images obtained using the STOC-T system maintain high resolution in all three dimensions, on a sample of about 700 μm, without the need for mechanical scanning. In the present work, we use known data processing algorithms for optical coherence tomography angiography (OCTA) and modify them to improve the rendering of the vasculature in the human retina at different depths by introducing the angio STOC-T method. The algorithms are primarily sensitive to the strong signal phase variance corresponding to the appearance of a wide Doppler band in STOC-T signals obtained for millisecond exposure times. After using STOC-T angiography, we can render high contrast images of the choroid.
Wydawca

Rocznik
Strony
95--104
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
  • International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland, mwojtkowski@ichf.edu.pl
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Gagarina 11, 87-100 Torun, Poland
Bibliografia
  • [1] Farazdaghi MK, Ebrahimi KB. Role of the choroid in age-related macular degeneration: a current review. J Ophthalmic Vis Res 2019;14:78-87.
  • [2] Cakir B, Reich M, Lang S, Buhler A, Ehlken C, Grundel B, et al. OCT angiography of the choriocapillaris in central serous chorioretinopathy: a quantitative subgroup analysis. Ophthalmol Ther 2019;8:75-86.
  • [3] Gutfleisch M, Rothaus K, Farecki ML, Faatz H, Heimes-Bussmann B, Gunnemann F, et al. OCT angiography of RPE tears in exudative AMD: morpohological analysis of the choriocapillaris and the RPE. Klin Monbl Augenheilkd 2017;234:1139-45.
  • [4] Moult EM, Shi Y, Zhang Q, Wang L, Mazumder R, Chen S, et al. Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomed Opt Express 2021;12: 4573-95.
  • [5] Chen CL, Wang RK. Optical coherence tomography based angiography [Invited]. Biomed Opt Express 2017;8:1056-82.
  • [6] Choi W, Mohler KJ, Potsaid B, Lu CD, Liu JJ, Jayaraman V, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One 2013;8:e81499.
  • [7] Zhang Q, Zheng F, Motulsky EH, Gregori G, Chu Z, Chen CL, et al. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Invest Ophthalmol Vis Sci 2018;59:203-11.
  • [8] Poddar R, Migacz JV, Schwartz DM, Werner JS, Gorczynska I. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate. J Biomed Opt 2017;22:1-14.
  • [9] Migacz JV, Gorczynska I, Azimipour M, Jonnal R, Zawadzki RJ, Werner JS. Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging. Biomed Opt Express 2019;10:50-65.
  • [10] Choi W, Moult EM, Waheed NK, Adhi M, Lee B, Lu CD, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative agerelated macular degeneration with geographic atrophy. Ophthalmology 2015;122: 2532-44.
  • [11] Chu Z, Zhou H, Cheng Y, Zhang Q, Wang RK. Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems. Sci Rep 2018;8:16826.
  • [12] Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR. Choriocapillaris imaging using multiple En face optical coherence tomography angiography image averaging. JAMA Ophthalmol 2017;135:1197-204.
  • [13] Auksorius E, Borycki D, Wegrzyn P, Žičkiené I, Adomavičius K, Sikorski BL, et al. Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography. Opt Lett 2022;47:838-41.
  • [14] Povazay B, Unterhuber A, Hermann B, Sattmann H, Arthaber H, Drexler W. Full-field time-encoded frequency-domain optical coherence tomography. Opt Express 2006;14:7661-9.
  • [15] Bonin T, Franke G, Hagen-Eggert M, Koch P, Huttmann G. In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. Opt Lett 2010;35: 3432-4.
  • [16] Spaide RF, et al. Optical coherence tomography angiography. Prog Retinal Eye Res 2018;64:1-55.
  • [17] Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, et al. Yang VXD Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 2008;33(13):1530-2.
  • [18] Enfield J, Jonathan E. Leahy M In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed Opt Express 2011;2(5):1184-93.
  • [19] Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Huang D Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 2012;20(4):4710-25.
  • [20] Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR. Gruber A Three dimensional optical angiography. Opt Express 2007;15(7):4083-97.
  • [21] Tan BY, et al. Approaches to quantify optical coherence tomography angiography metrics. Ann Transl Med 2020;8:1205.
  • [22] Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C, Nemetz S, Kraus MF, Hornegger J, et al. Choroid, Haller’s, and Sattler’s layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes. Invest Ophthalmol Vis Sci 2014;55:5074-80.
  • [23] Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS, Schwartz DM, et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci USA 2013;110:14354-9.
  • [24] In vivo optical frequency domain imaging of human retina and choroid ECW Lee, JF de Boer, M Mujat, H Lim, SH Yun Optics express 14(10), 4403-4411.
  • [25] Large area choroidal and retinal vasculature maps in rats M. Mujat, A. Patel, RD Ferguson, N. Iftimia Investigative Ophthalmology & Visual Science 62 (8), 372-372.
  • [26] Choroidal and retinal hemodynamic imager M. Mujat, A. Patel, G. Maguluri, RD. Ferguson, N. Iftimia Ophthalmic Technologies XXXI 11623, 26-34.
  • [27] Marsh-Armstrong B, Migacz J, Jonnal R, Werner JS. Quantification of choriocapillaris structure in high-resolution OCTA images. Invest Ophthalmol Vis Sci 2019;60:3089.
  • [28] Gorczynska I, Migacz JV, Zawadzki RJ, Capps AG, Werner JS. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed Opt Express 2016;7: 911-42.
  • [29] Kirby, M.A., Li, C., Choi, W.J., Gregori, G., Rosenfeld, P.J., Wang, R.K., 2018. Why choroid vessels appear dark in clinical OCT images. Proc. SPIE, Ophthalmic Technol. XXVIII, 1047428. https://doi.org/10.1117/12.2291057, 80.
  • [30] Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res 2018;67:30-55.
  • [31] Wang JC, Laíns I, Silverman RF, Sobrin L, Vavvas DG, Miller JW, et al. Miller Visualization of choriocapillaris and choroidal vasculature in healthy eyes with en face swept-source optical coherence tomography versus angiography Transl. Vis Sci Technol 2018;7.
  • [32] Borrelli E, Sacconi R, Klose G, et al. Rotational Three-dimensional OCTA: a Notable New Imaging Tool to Characterize Type 3 Macular Neovascularization. Sci Rep 2019;9:17053.
  • [33] Bailey Steven T, Patel Rachel, Wang Jie, Lauer Andreas, Peter Campbell J, Kiang Lee, et al. Projection-resolved optical coherence tomography angiography of choroidal neovascularization. Invest Ophthalmol Vis Sci 2018;59(9):2620.
  • [34] Pellegrini M, Corvi F, Invernizzi A, Ravera V, Cereda MG, Staurenghi G. SWEPTsource optical coherence tomography angiography in choroidal melanoma: an analysis of 22 consecutive cases. Retina 2019;39:1510-8.
  • [35] Ho S, Ly A, Ohno-Matsui K, Kalloniatis M, Doig GS. Diagnostic accuracy of OCTA and OCT for myopic choroidal neovascularisation: a systematic review and metaanalysis. Eye (Lond) 2023 Jan;37(1):21-9.
  • [36] Xu F, Li Z, Yang X, Gao Y, Li Z, Li G, et al. Assessment of choroidal structural changes in patients with pre- and early-stage clinical diabetic retinopathy using wide-field SS-OCTA. Front Endocrinol (Lausanne) 2023 Jan;19(13):1036625.
  • [37] Athwal A, Dao-Yi Yu, Paula Yu, Mammo Z, Balaratnasingham C, Mehnert A, et al. Measurement of spatial and temporal retinal perfusion heterogeneity using OCTA. Invest Ophthalmol Vis Sci 2021;62(8):375.
  • [38] Hao Wu, Zhang G, Shen M, Renchang Xu, Wang P, Guan Z, et al. Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA. Invest Ophthalmol Vis Sci 2021;62(1):8.
  • [39] Chen Y, Xu Y, Zhang M. Choroid and choriocapillaris changes in early-stage Parkinson’s disease: a swept-source optical coherence tomography angiographybased cross-sectional study. Alzheimers Res Ther 2022 Aug 25;14(1):116.
  • [40] Zeng Q, Yao Y, Tu S, Zhao M. Quantitative analysis of choroidal vasculature in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography. Sci Rep 2022 Nov 1;12(1):18427.
  • [41] Zang P, Hormel TT, Hwang TS, Bailey ST, Huang D, Jia Y. Deep-learning-aided diagnosis of diabetic retinopathy, age-related macular degeneration, and glaucoma based on structural and angiographic OCT. Ophthalmol Sci 2022 Nov 9;3(1): 100245.
  • [42] Heisler Morgan, Lu Donghuan, Lo Julian, Karst Sonja, Schuck Nathan, Ju MyeongJin, et al. Machine learning based end-to-end pipeline for optical coherence tomography angiography of diabetic retinopathy. Invest Ophthalmol Vis Sci 2019;60(9):2204.
  • [43] Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in Optical coherence tomography angiography. Retina 2015;35:2163-80.
  • [44] Hormel TT, Huang D, Jia Y. Artifacts and artifact removal in optical coherence tomographic angiography. Quant Imaging Med Surg 2021 Mar;11(3):1120-33. https://doi.org/10.21037/qims-20-730. PMID: 33654681; PMCID: PMC7829161.
  • [45] Siadati M, Miao Y, Athwal A, Ma Da, Mammo Z, Ju Myeong Jin. Contrast-enhanced motion-free volumetric retinal structure and angiography reconstruction using optical coherence tomography intensity-based volume registration and averaging process. Invest Ophthalmol Vis Sci 2022;63(7):228-F0075.
  • [46] Stremplewski P, Auksorius E, Wnuk P, Kozon L, Garstecki P, Wojtkowski M. In vivo volumetric imaging by crosstalk-free full-field OCT. Optica 2019;6:608-17.
  • [47] Borycki D, Hamkało M, Nowakowski M, Szkulmowski M, Wojtkowski M. Spatiotemporal optical coherence (STOC) manipulation suppresses coherent crosstalk in full-field swept-source optical coherence tomography. Biomed Opt Express 2019;10:2032-54.
  • [48] Wojtkowski M, Stremplewski P, Auksorius E, Borycki D. Spatio-Temporal Optical Coherence Imaging - a new tool for in vivo microscopy. Photonics Letters of Poland 2019;11:45-50.
  • [49] Hillmann D, Spahr H, Hain C, Sudkamp H, Franke G, Pfaffle C, et al. Aberration-free volumetric high-speed imaging of in vivo retina. Sci Rep 2016;6:35209.
  • [50] Auksorius E, Borycki D, Wojtkowski M. Multimode fiber enables control of spatial coherence in Fourier-domain full-field optical coherence tomography for in vivo corneal imaging. Opt Lett 2021;46:1413-6.
  • [51] Tomczewski S, Węgrzyn P, Borycki D, Auksorius E, Wojtkowski M, Curatolo A. Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomed Opt Express 2022;13:2186-201.
  • [52] Auksorius E, Borycki D, Wegrzyn P, Sikorski BL, Lizewski K, Zickiene I, et al. Spatio-Temporal Optical Coherence Tomography provides full thickness imaging of the chorioretinal complex. IScience 2022;25(12):105513.
  • [53] Braaf B, Donner S, Nam AS, Bouma BE, Vakoc BJ. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina. Biomed Opt Express 2018 Jan 8;9(2):486-506.
  • [54] Auksorius E. Fourier-domain full-field optical coherence tomography with realtime axial imaging. Opt Lett 2021;46:4478-81.
  • [55] Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomed Opt Express 2019;10:6390-407.
  • [56] Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404-22.
  • [57] Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans Image Process Feb. 2006;15(2):430-44. https://doi.org/10.1109/TIP.2005.859378.
  • [58] Wang Z, Bovik AC. A universal image quality index. IEEE Signal Process Lett March 2002;9(3):81-4. https://doi.org/10.1109/97.995823.
  • [59] Goodman JW. Speckle Phenomena in Optics: Theory and Applications. Roberts and Company Publishers; 2007.
  • [60] Phansalkar N, More S, Sabale A, Joshi M. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In: 2011 International Conference on Communications and Signal Processing. IEEE; 2011. p. 218-20.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9dca4d3f-6b72-40b2-8238-7210d6564dc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.