Czasopismo
2016
|
Vol. 64, no. 5
|
1715--1730
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The Karviná region is well known as an area with an intensive mining induced seismicity. The local geological pattern, especially subsurface sedimentary layers, belongs to one of the most important factors that influence the amplification of seismic effect on the surface. In order to investigate the amplification effect, there are used methods of spectral ratio that enable to analyse records of vibrations. In the present study, two methods, signed as SSR (standard spectral ratio) and HVSR (horizontal to vertical spectral ratio), were used for the site effect evaluation. The analysis was performed in the populated Doubrava locality where high seismic loading on the surface due to mining induced seismicity is documented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1715--1730
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Institute of Geonics, Czech Academy of Sciences, Ostrava-Poruba, Czech Republic, lednicka@ugn.cas.cz
autor
- Institute of Geonics, Czech Academy of Sciences, Ostrava-Poruba, Czech Republic, kalab@ugn.cas.cz
Bibliografia
- Adámek, J., and J. Holečko (2014), The monitoring of induced seismicity by the network of seismic stations on surface area OKD, EGRSE – Exploration Geophys. Remote Sens. Environ. 21, 1, 1-14 (in Czech).
- Borcherdt, R.D. (1970), Effects of local geology on ground motion near San Francisco Bay, Bull. Seismol. Soc. Am. 60, 1, 29-61.
- Doležalová, H., K. Holub, and Z. Kaláb (2008), Underground coal mining in the Karviná Region and its impact on the human environment (Czech Republic), Moravian Geograph. Rep. 16, 2, 14-24.
- Dopita, M., V. Havlena, and J. Pešek (1985), Deposits of Fossil Fuel, SNTL/ALFA, Prague, 263 pp. (in Czech).
- Driad-Lebeau, L., N. Lokmane, J.F. Semblat, and G. Bonnet (2009), Local amplification of deep mining induced vibrations. Part 1: Experimental evidence for site effects in a coal basin, Soil Dyn. Earthq. Eng. 29, 1, 39-50, DOI: 10.1016/j.soildyn.2008.01.014.
- Frej, A., and W.M. Zuberek (2008), Local effects in peak accelerations caused by mining tremors in Bytom Syncline Region (Upper Silesia), Acta Geodyn. Geomater. 5, 2, 150, 115-122.
- Grygar, R., and P. Waclawik (2011), Structural-tectonic conditions of Karviná Subbasin with regard to its position in the apical zone of Variscan accretion wedge, Acta Montan. Slov. 16, 2, 159-175.
- Holečko, J., and P. Koníček (2007), Selected geological factors impacting effects of induced seismicity on surface in conditions of Ostrava-Karvina coalfield in the Czech Republic. In: R. Sousa, Olalla and Grossmann (eds.), Proc. 11th Congr. Int. Society for Rock Mechanics, Taylor & Francis Group, London, 1177-1184.
- Kaláb, Z., and A.A. Lyubushin (2008), Study of site effect using mining induced seismic events and ambient noise from Karviná Region, Acta Geodyn. Geomater. 5, 2, 150, 105-113.
- Kaláb, Z., and J. Knejzlík (2006), Field measurement of surface seismic vibrations provoked by mining in Karvina region, Publs. Inst. Geophys. Pol. Acad. Sc. M-29, 395, 185-194.
- Kaláb, Z., and M. Lednická (2012), Foundation conditions of buildings in undermined areas: Example of evaluation, Acta Geophys. 60, 2, 399-409, DOI: 10.2478/s11600-011-0071-8.
- Kaláb, Z., J. Knejzlík, and M. Lednická (2013), Application of newly developed rotational sensor for monitoring of mining induced seismic events in the Karvina region, Acta Geodyn. Geomater. 10, 2, 170, 197-205, DOI: 10.13168/AGG.2013.0020.
- Kaláb, Z., R. Kořínek, and E. Hrubešová (2009), Technical seismicity as natural extreme in Karvina region, Górnictwo i Geologia 4, 2a, 87-94.
- Knejzlík, J., and Z. Kaláb (2002), Seismic recording apparatus PCM3-EPC, Publs. Inst. Geophys. Pol. Acad. Sc. M-24, 340, 187-194.
- Knejzlík, J., Z. Kaláb, and Z. Rambouský (2012), Adaptation of the S-5-S pendulum seismometer for measurement of rotational ground motion, J. Seismol. 16, 4, 649-656, DOI: 10.1007/s10950-012-9279-6.
- Lasocki, S. (2013), Site specific prediction equations for peak acceleration of ground motion due to earthquakes induced by underground mining in LegnicaGłogów copper district in Poland, Acta Geophys. 61, 5, 1130-1155, DOI: 10.2478/s11600-013-0139-8.
- Lednická, M. (2015), Elaboration of ground motion directivity in undermined area based on seismic noise measurement. In: Proc. 15th Int. Multidisciplinary Scientific GeoConference SGEM 2015, Albena, Bulgaria, Book 1, Vol. 3, 815-822, DOI: 10.5593/SGEM2015/B13/S5.106.
- Lednická, M., and Z. Kaláb (2014), Mapping the resonance frequency of sedimentary layers in the vicinity of a permanent seismic station in undermined area. In: Proc. 14th Int. Multidisciplinary Scientific GeoConference SGEM 2014, Albena, Bulgaria, Book 1, Vol. 1, 513-520, DOI: 10.5593/ SGEM2014/B11/S5.068.
- Lermo, J., and F.J. Chávez-García (1993), Site effect evaluation using spectral ratios with only one station, Bull. Seismol. Soc. Am. 83, 5, 1574-1594.
- Lurka, A., and K. Stec (2005), Seismic wave radiation characteristics in the epicentral area of the LGOM tremors. In: WARSZTATY 2005, Zagrożenia Naturalne w Górnictwie, 391-404 (in Polish).
- Lyubushin, A.A., Z. Kaláb, M. Lednická, and J. Knejzlík (2015), Coherence spectra of rotational and translational components of mining induced seismic events, Acta Geod. Geophys. 50, 4, 391-402, DOI: 10.1007/s40328-015- 0099-3.
- Martinec, P. et al. (2006), Termination of Underground Coal Mining and its Impact on Environment, ANAGRAM, Ostrava, 128 pp.
- Olszewska, D., and S. Lasocki (2004), Application of the horizontal to vertical ratio technique for estimating the site characteristics of ground motion caused by mining induced seismic events, Acta Geophys. Pol. 52, 3, 302-318.
- Panzera, F., and K. Vogfjörd (2014), Directional amplifications of the ground motion in a spreading area, South Iceland. In: Second European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 1-2.
- Panzera, F., G. Lombardo, S. D’Amico, and P. Galea (2013), Speedy techniques to evaluate seismic site effects in particular geomorphologic conditions: faults, cavities, landslides and topographic irregularities. In: S. D’Amico (ed.), Engineering Seismology, Geotechnical and Structural Earthquake Engineering, InTech, 101-145. DOI: 10.5772/55439, available from: http://www.intechopen.com/books/engineering-seismology-geotechnicaland-structural-earthquake-engineering/speedy-techniques-to-evaluateseismic-site-effects-in-particular-geomorphologic-conditions-faults-ca.
- Panzera, F., M. Pischiutta, G. Lombardo, C. Monaco, and A. Rovelli (2014), Wavefield polarization in fault zones of the western flank of Mt. Etna: observations and fracture orientation modelling, Pure Appl. Geophys. 171, 11, 3083-3097, DOI: 10.1007/s00024-014-0831-x.
- Pitilakis, K. (2004), Site effect. In: A. Ansal (ed.), Recent Advance in Earthquake Geotechnical Engineering and Microzonation, Kluwer Academic Publisher, Dordrecht, 139-197.
- Ptáček, J., R. Grygar, P. Koníček, and P. Waclawik (2012), The impact of Outer Western Carpathian nappe tectonics on the recent stress-strain state in the Upper Silesian Coal Basin (Moravosilesian Zone, Bohemian Massif), Geol. Carpath. 63, 1, 3-11, DOI: 10.2478/v10096-012-0002-x.
- Rudajev, V. (1993), Recent Polish and Czechoslovakian rockburst research and the application of stochastic methods in mine seismology. In: Rockbursts and Seismicity in Mines, Balkema, Rotterdam, 157-161.
- Semblat, J.F., N. Lokmane, L. Driad-Lebeau, and G. Bonnet (2010), Local amplification of deep mining induced vibrations. Part 2: Simulation of ground motion in a coal basin, Soil Dyn. Earthq. Eng. 30, 10, 947-957, DOI: 10.1016/j.soildyn.2010.04.006.
- Steidl, J.H., A.G. Tumarkin, and R.J. Archuleta (1996), What is a reference site?, Bull. Seismol. Soc. Am. 86, 6, 1733-1748.
- Waclawik, P., J. Ptáček, and R. Grygar (2013), Structural and stress analysis in mining practice in the Upper Silesian Coal Basin, Acta Geodyn. Geomater. 10, 2, 170, 255-265, DOI: 10.13168/AGG.2013.0026.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9d9626d8-b875-454c-940e-74e149347406