Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 1097--1112
Tytuł artykułu

Effects of vegetation distribution along river transects on the morphology of a gravel bed braided river

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction between vegetation, sediment, and water flow creates various fluvial landscapes. Hydrological conditions and flood disturbances, as well as the habitat preference of vegetation, regulate its spatial distribution. To describe the spatial distribution of vegetation cover, here, we focus on vegetation distributions along river transverse transects that define vertical and horizontal distances from water areas during low flow periods. As one of the most dynamic river types, braided rivers can be significantly influenced by vegetation encroachment. However, the effects of vegetation distributions along river transects on braided river morphology remain unknown. To study the potential influence of vegetation distribution along river transects, a depth-averaged, hydro-morphodynamic model was employed. Using the model, we investigated a medium-sized, braided river with a gravel bed affected by riparian vegetation. The following scenarios of vegetation transect distributions were examined: (1) vegetation established near or covering the low water channel, and (2) vegetation established on bar tops and kept at a distance from the low water channel. The model successfully reproduced a reduction in the braiding index for a vegetated braided river. Depending on the transect distribution scenarios employed, significantly different effects for river morphology were obtained. For example, compared to vegetation on bar tops, vegetation located near the low water channel played a more critical role for changing river morphology, redirecting water flow, and changing the statistical characteristics of the riverbed elevation distribution. Vegetation near the low water channel not only concentrated water flow to low water channels but also redirected flow to the high elevation area by reducing low water channel flow capacity. The revealed effects of the vegetation transect distribution on river morphology development helped to determine effective management protocols for reducing the negative impact of vegetation encroachment.
Wydawca

Czasopismo
Rocznik
Strony
1097--1112
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Zhejiang Institute of Hydraulics and Estuary, Hangzhou, People’s Republic of China
autor
  • Nagoya University, Nagoya, Japan
Bibliografia
  • 1. Baar AW, Boechat Albernaz M, van Dijk WM, Kleinhans MG (2019) Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat Commun 10:4903. https://doi.org/10.1038/s41467-019-12753-x
  • 2. Bertoldi W, Gurnell AM, Drake NA (2011) The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements. Water Resour Res 47:1-13. https://doi.org/ 10.1029/2010WR010319
  • 3. Bertoldi W, Siviglia A, Tettamanti S, Toffolon M, Vetsch D, Franca-lanci S (2014) Modeling vegetation controls on fluvial morphological trajectories. Geophys Res Lett 41:7167-7175. https://doi. org/10.1002/2014GL061666
  • 4. Bywater-Reyes S, Diehl RM, Wilcox AC (2018) The influence of a vegetated bar on channel-bend flow dynamics. Earth Surf Dyn 6:487-503. https://doi.org/10.5194/esurf-6-487-2018
  • 5. Camporeale C, Ridolfi L (2006) Riparian vegetation distribution induced by river flow variability: a stochastic approach. Water Resour Res 42:1-13. https://doi.org/10.1029/2006WR004933
  • 6. Camporeale C, Perucca E, Ridolfi L, Gurnell AM (2013) Modeling the interactions between river morphodynamics and riparian vegetation. Rev Geophys 51:379-414. https://doi.org/10.1002/rog.20014
  • 7. Colombini M, Seminara G, Tubino M (1987) Finite-amplitude alternate bars. J Fluid Mech 181:213-232. https://doi.org/10.1017/S0022 112087002064
  • 8. Corenblit D, Steiger J, Gurnell AM, Tabacchi E, Roques L (2009) Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf Process Landf 34:1790-1810. https://doi.org/10.1002/esp.1876
  • 9. Corenblit D, Vautier F, González E, Steiger J (2020) Formation and dynamics of vegetated fluvial landforms follow the biogeomor-phological succession model in a channelized river. Earth Surf Process Landf 45:2020-2035. https://doi.org/10.1002/esp.4863
  • 10. Crosato A, Saleh MS (2011) Numerical study on the effects of floodplain vegetation on river planform style. Earth Surf Process Landf 36:711-720. https://doi.org/10.1002/esp.2088
  • 11. Edmaier K, Crouzy B, Perona P (2015) Experimental characterization of vegetation uprooting by flow. J Geophys Res G Biogeosci 120:1812-1824. https://doi.org/10.1002/2014JG002898
  • 12. Garcia Lugo GA, Bertoldi W, Henshaw AJ, Gurnell AM (2015) The effect of lateral confinement on gravel bed river morphology. Water Resour Res 51:7145-7158. https://doi.org/10.1002/ 2015WR017081
  • 13. Gran K, Paola C (2001) Riparian vegetation controls on braided stream dynamics. Water Resour Res 37:3275-3283. https://doi. org/10.1029/2000WR000203
  • 14. Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4-25. https://doi.org/10.1002/esp.3397
  • 15. Iwasaki T, Shimizu Y, Kimura I (2016a) Numerical simulation of bar and bank erosion in a vegetated floodplain: a case study in the Otofuke River. Adv Water Resour 93:118-134. https://doi. org/10.1016/j.advwatres.2015.02.001
  • 16. Iwasaki T, Shimizu Y, Kimura I (2016b) Sensitivity of free bar morphology in rivers to secondary flow modeling: Linear stability analysis and numerical simulation. Adv Water Resour 92:57-72. https://doi.org/10.1016/j.advwatres.2016.03.011
  • 17. Jang CL, Shimizu Y (2007) Vegetation effects on the morphological behavior of alluvial channels. J Hydraul Res 45:763-772. https://doi.org/10.1080/00221686.2007.9521814
  • 18. Jourdain C, Claude N, Tassi P, Cordier F, Antoine G (2020) Morpho-dynamics of alternate bars in the presence of riparian vegetation. Earth Surf Process Landf 45:1100-1122. https://doi.org/ 10.1002/esp.4776
  • 19. Kang S, Kang H, Ko D, Lee D (2002) Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica. Ecol Eng 18:467-475. https://doi.org/10.1016/ S0925-8574(01)00107-0
  • 20. Kim HS, Kimura I, Shimizu Y (2015) Bed morphological changes around a finite patch of vegetation. Earth Surf Process Landf 40:375-388. https://doi.org/10.1002/esp.3639
  • 21. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51:883-915. https://doi.org/10.1016/j. coastaleng.2004.07.014
  • 22. Leu JM, Chan HC, Jia Y, He Z, Wang SSY (2008) Cutting management of riparian vegetation by using hydrodynamic model simulations. Adv Water Resour 31:1299-1308. https://doi.org/ 10.1016/j.advwatres.2008.06.001
  • 23. Mahoney JM, Rood SB (1998) Streamflow requirements for cottonwood seedling recruitment—an integrative model. Wetlands 18:634-645. https://doi.org/10.1007/BF03161678
  • 24. Mao, L., Ravazzolo, D., Bertoldi, W., 2020. The role of vegetation and large wood on the topographic characteristics of braided river systems. Geomorphology 367: 107299. https://doi.org/10. 1016/j.geomorph.2020.107299
  • 25. Martínez-Fernández V, Van Oorschot M, De Smit J, González del Tánago M, Buijse AD (2018) Modelling feedbacks between geomorphological and riparian vegetation responses under climate change in a Mediterranean context. Earth Surf Process Landf 43:1825-1835. https://doi.org/10.1002/esp.4356
  • 26. Millar RG (2000) Influence of bank vegetation on alluvial channel patterns. Water Resour Res 36:1109-1118. https://doi.org/10.1029/ 1999WR900346
  • 27. Millar RG (2005) Theoretical regime equations for mobile gravel-bed rivers with stable banks. Geomorphology 64:207-220. https://doi. org/10.1016/j.geomorph.2004.07.001
  • 28. Mosner E, Weber A, Carambia M, Nilson E, Schmitz U, Zelle B, Donath T, Horchler P (2015) Climate change and floodplain vegetation-future prospects for riparian habitat availability along the Rhine River. Ecol Eng 82:493-511. https://doi.org/10.1016/j.ecole ng.2015.05.013
  • 29. Murray BA, Paola C (2003) Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf Process Landf 28:131143. https://doi.org/10.1002/esp.428
  • 30. Nagata T, Watanabe Y, Shimizu Y, INnoue T, Funaki J (2016) Study on dynamics of river channel and vegetation in gravel bed river. J Japan Soc Civil Eng Ser B1 (Hydraulic Engineering) 72:I_1081-I_1086. https://doi.org/10.2208/jscejhe.72.I_1081
  • 31. Schuurman F, Kleinhans MG (2015) Bar dynamics and bifurcation evolution in a modelled braided sand-bed river. Earth Surf Process Landf 40:1318-1333. https://doi.org/10.1002/esp.3722
  • 32. Schuurman F, Marra WA, Kleinhans MG (2013) Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J Geophys Res Earth Surf 118:25092527. https://doi.org/10.1002/2013JF002896
  • 33. Schuurman F, Ta W, Post S, Sokolewicz M, Busnelli M, Kleinhans M (2018) Response of braiding channel morphodynamics to peak discharge changes in the Upper Yellow River. Earth Surf Process Landf 43:1648-1662. https://doi.org/10.1002/esp.4344
  • 34. Schuurman F, Kleinhans MG (2011) Self-formed braided bar pattern in a numerical model. In: Proceedings of the 5th IAHR Symposium on River, coastal and estuarine morphodynamics, pp 1647-1657.
  • 35. Solari L, Van Oorschot M, Belletti B, Hendriks D, Rinaldi M, Vargas-Luna A (2016) Advances on modelling Riparian vegetationhydromorphology interactions. River Res Appl 32:164-178. https://doi.org/10.1002/rra.2910
  • 36. Stecca G, Zolezzi G, Hicks DM, Surian N (2019) Reduced braiding of rivers in human-modified landscapes: converging trajectories and diversity of causes. Earth Sci Rev 188:291-311. https://doi.org/ 10.1016/j.earscirev.2018.10.016
  • 37. Ström L, Jansson R, Nilsson C (2012) Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshw Biol 57:49-60. https://doi.org/10.1111/j.1365-2427.2011.02694.x
  • 38. Sumi T, Tsunekawa A, Tsujimoto T (2003) A study on physical environment and water-solute transport in surface substrate under vegetation on a sandbar in Kizu River. Adv River Eng 9:389-394
  • 39. Sumitomo, K., Watanabe, Y., Izumi, N., Yamaguchi, S., Tokohama, H., 2016. Study on the maintenance of former watercourses by the artificial flood for river channel disturbance. J Japan Soc Civil Eng Ser. B1 (Hydraulic Engineering) 72:I_751-I_756. https://doi. org/10.2208/jscejhe.72.I_751
  • 40. Sumitomo K, Watanabe Y, Izumi N, Yamaguchi S, Yonemoto M (2018) The effect of branched channel maintenance on river channel evolution during floods. J Japan Soc Civil Eng Ser. B1 (Hydraulic Engineering) 74:I_1003-I_1008. https://doi.org/10.2208/jscejhe. 74.5_I_1003
  • 41. Tal M, Paola C (2007) Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35:347-350. https://doi.org/10.1130/G23260A.1
  • 42. Tal M, Paola C (2010) Effects of vegetation on channel morphodynam-ics: results and insights from laboratory experiments. Earth Surf Process Landf 35:1014-1028. https://doi.org/10.1002/esp.1908
  • 43. Tockner K, Paetzold A, Karaus U, Claret C, Zettel J (2006) Ecology of Braided rivers, in: Braided Rivers. Blackwell Publishing Ltd., Oxford, pp 339-359. https://doi.org/10.1002/9781444304374. ch17
  • 44. Toshimori N, Miyamoto H (2014) Probabilistic evaluation for flood water level reduction by thinning and cutting-down of a vegetated channel using a vegetation dynamics model. J Japan Soc Civil Eng Ser. B1 (Hydraulic Engineering) 70:I_1381-I_1386. https://doi. org/10.2208/jscejhe.70.i_1381
  • 45. Tsujimoto T (1999) Fluvial processes in streams with vegetation. J Hydraul Res 37:789-803. https://doi.org/10.1080/0022168990 9498512
  • 46. Van Dijk WM, Teske R, Van De Lageweg WI, Kleinhans MG (2013) Effects of vegetation distribution on experimental river channel dynamics. Water Resour Res 49:7558-7574. https://doi.org/10. 1002/2013WR013574
  • 47. van Oorschot M, Kleinhans M, Geerling G, Middelkoop H (2016) Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf Process Landf 41:791-808. https:// doi.org/10.1002/esp.3864
  • 48. van Oorschot M, Kleinhans MG, Geerling GW, Egger G, Leuven RSEW, Middelkoop H (2017) Modeling invasive alien plant species in river systems: interaction with native ecosystem engineers and effects on hydro-morphodynamic processes. Water Resour Res 53:6945-6969. https://doi.org/10.1002/2017WR020854
  • 49. van Oorschot M, Kleinhans M, Buijse T, Geerling G, Middelkoop H (2018) Combined effects of climate change and dam construction on riverine ecosystems. Ecol Eng 120:329-344. https://doi.org/ 10.1016/j.ecoleng.2018.05.037
  • 50. Vargas-Luna A, Crosato A, Calvani G, Uijttewaal WSJ (2016) Representing plants as rigid cylinders in experiments and models. Adv Water Resour 93:205-222. https://doi.org/10.1016/j.advwatres. 2015.10.004
  • 51. Vargas-Luna A, Duró G, Crosato A, Uijttewaal W (2019) Morphological adaptation of river channels to vegetation establishment: a laboratory study. J Geophys Res Earth Surf 124:1981-1995. https://doi.org/10.1029/2018JF004878
  • 52. Weisscher SAH, Shimizu Y, Kleinhans MG (2019) Upstream perturbation and floodplain formation effects on chute-cutoff-dominated meandering river pattern and dynamics. Earth Surf Process Landf 44:2156-2169. https://doi.org/10.1002/esp.4638
  • 53. Zong L, Nepf H (2011) Spatial distribution of deposition within a patch of vegetation. Water Resour Res 47:1-12. https://doi.org/10.1029/ 2010WR009516
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9d06fbfe-0027-4a39-9161-6d2064a5303f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.