Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 44, No. 1 | 33--41
Tytuł artykułu

On the probability distribution of Earth Orientation Parameters data

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Earth Orientation Parameters (EOPs), i.e. pole coordinates (xp, yp), Universal Time (UT1-UTC), and celestial pole offsets (dX, dY ), are the transformation parameters between the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference Frame (ICRF). It is customarily assumed that each of the EOP time series follows the normal distribution. The normality assumption has been used specifically in EOP prediction studies. The objective of this paper is to investigate the normality hypothesis in detail. We analysed the daily time series of xp, yp, UT1-UTC, length-of-day (Δ), dX, and dY in the time interval from 01.01.1962 to 31.12.2008. The UT1-UTC data were transformed to UT1R-TAI by removing leap seconds and the tidal signal using the IERS model. The tidal effects δΔ were also removed from the Δ time series and Δ−δΔ data were obtained. Furthermore, we constructed the residuals of these time series using least-squares fit. We evaluated the skewness and kurtosis and tested their statistical significance by the D’Agostino and the Anscombe-Glynn tests, respectively. In addition, the Anderson-Darling test for the normal distribution was applied. It was found that the xp, yp time series and their residuals slightly depart from the normal distribution, but this departure is rather due to marginal flattening/narrowing of the probability density function than due to extreme values. The UT1R-TAI time series and its residuals were also classified as non-Gaussian, however, the deviations from the normal distribution are again slight. The similar results hold for the Δ - δΔ data, but some of its residuals were found to be Gaussian. We noticed that the celestial pole offsets, dX and dY , tend to deviate from the Gaussian distribution. In addition, we examined the determination errors of EOP data and found them to depart significantly from the normal distribution.
Wydawca

Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Space Research Centre, Polish Academy of Sciences, Poland, niedzielski@cbk.waw.pl
  • Oceanlab, University of Aberdeen, Scotland, UK
autor
  • Department of Mathematical Sciences, Indiana University, USA, asen@iupui.edu
autor
Bibliografia
  • Akyilmaz O., Kutterer H. (2004) Prediction of Earth rotation parameters by fuzzy inference systems, Journal of Geodesy, 78, 82-93.
  • Anscombe F.J., Glynn W.J. (1983) Distribution of kurtosis statistic for normal statistics, Biometrika, 70, 227-234.
  • Consolini G., De Michelis P. (1998) Non-Gaussian distribution functions of AE-index fluctuations: Evidence of time intermittency, Geophysical Research Letters, 25, 4087-4090.
  • D’Agostino R.B. (1970) Transformation to Normality of the Null Distribution of G1, Biometrika, 57, 679-681.
  • Eubanks T.M. (1993) Variations in the Orientation of the Earth, Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Smith D.E., Turcotte D.L. (eds), AGU Geodynamics Series, 1-54.
  • Freedman A.P., Steppe J.A., Dickey J.O., Eubanks T.M., Sung L.Y. (1994) The shortterm prediction of universal time and length of day using atmospheric angular momentum, Journal of Geophysical Research, 99(B4), 6981-6996.
  • Kalarus M., Kosek W. (2004) Prediction of Earth orientation parameters by artificial neural networks. Artificial Satellite, 39, 175-184.
  • Kosek W., McCarthy D.D., Luzum B.J. (1998) Possible improvement of Earth orientation forecast using autocovariance prediction procedures, Journal of Geodesy, 72, 189-199.
  • Kosek W., Kalarus M., Johnson T.J., Wooden W.H., McCarthy D.D., Popi´nski W. (2005) A comparison of LOD and UT1-UTC forecasts by different combination prediction techniques, Artificial Satellites, 40, 119-125.
  • McCarthy D.D., Petit G., eds., (2004) IERS Conventions 2003, IERS Technical Note No. 32, Verlag des Bundesamts f¨ur Kartographie und Geod¨asie, Frankfurt am Main.
  • Niedzielski T., Kosek W. (2008) Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods, Journal of Geodesy, 82, 83-92.
  • Petrov S., Brzeziński A., Gubanov V. (1995) On application of the Kalman filter and the least squares collocation in Earth rotation investigations, Proc. Journées 1995, Systémes de Réf´erence Spatio-Temporels, Capitaine N. et al. (eds), Warsaw, 125-128.
  • Schuh H., Ulrich M., Egger D., Mueller J., Schwegmann W. (2002) Prediction of Earth orientation parameters by artificial neural networks, Journal of Geodesy, 76, 247-258.
  • Stoyko N. (1937) Sur la periodicite dans l’irregularite de la rotation de la Terre, Comptes rendus des Seances de l’Academie des Sciences, Paris, 205, 79.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9cd49de4-4e5a-49ea-9269-df483c93286c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.