Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 68, nr 2 | 51--61
Tytuł artykułu

The effect of particle size on the mechanical properties of Alkali Activated Steel Slag Mortar

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the rapid development of industry, abundant industrial waste has resulted in escalating environmental issue. Steel slag is the by-product of steel-making and can be used as cementitious materials in construction. However, the low activity of steel slag limits its utilization. Much investigation has been conducted on steel slag, while only a fraction of the investigation focuses on the effect of steel slag particle size on the properties of mortar. The aim of this study is to investigate the effect of steel slag particle size as cement replacement on properties of steel slag mortar activated by sodium sulphate (Na2SO4). In this study, two types of steel slag, classified as fine steel slag (FSS) with particle sizes of 0.075 mm and coarse steel slag (CSS) with particle sizes of 0.150 mm, were used for making alkali activated steel slag (AASS) mortar. Flow table test, compressive strength test, flexural strength test and UPV test were carried out by designing and producing AASS mortar cubes of (50x50x50) mm at 0,10%, 20% and 30% replacement ratio and at 0.85% addition of Na2SO4. The results show that the AASS mortar with FSS possess a relatively good strength in AASS mortar. AASS mortar with FSS which is relatively finer shows a higher compressive strength than CSS up to 38.0% with replacement ratio from 10% to 30%. This study provided the further investigation on the combined influence of replacement ratio and particle size of SS in the properties of fresh and hardened AASS.
Wydawca

Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
autor
  • College of Engineering, University Malaysia Pahang, Gambang Kuantan Pahang, Malaysia, dohsi@ump.edu.my
autor
  • College of Engineering, University Malaysia Pahang, Gambang Kuantan Pahang, Malaysia, hochiaminn@gmail.com
autor
  • College of Engineering, University Malaysia Pahang, Gambang Kuantan Pahang, Malaysia, scchin@ump.edu.my
  • Faculty of Chemical Engineering Technology, University Malaysia Perlis, Malaysia, nurliza@unimap.edu.my
  • Department of Physics, Czestochowa University of Technology, Poland, nmarcell@wp.pl
Bibliografia
  • [1] Z. Yildirim, M. Prezzi, “Chemical, mineralogical, and morphological properties of steel slag”, Advances in Civil Engineering, 2011, DOI: 10.1155/2011/463638.
  • [2] H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, H. Chen, “An Overview of Utilization of Steel Slag”, Procedia Environmental Sciences, 2012, vol.16, pp. 791-801, DOI: 10.1016/j.proenv.2012.10.108.
  • [3] Worldsteel.org, "Global crude steel output increases by 4.6% in 2018". [Online]. Available: https://worldsteel.org/media-centre/press-releases/2019/global-crude-steel-output-increases-by-4-6-in-2018/. [Accessed: 25 Jan. 2019].
  • [4] K.R. Reddy, A. Gopakumar, J.K. Chetri, “Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation”, Reviews in Environmental Science and Bio/Technology, 2019, vol. 18, pp. 127-152, DOI: 10.1007/s11157-018-09490-w.
  • [5] S. Das, H.S. Gwon, M.I. Khan, “Steel slag amendment impacts on soil microbial communities and activities of rice (Oryzasativa L.)”, Scientific Reports, 2020, vol. 10, no. 1, pp. 1-11, DOI: 10.1038/s41598-020-63783-1.
  • [6] T. Zhang, Q. Yu, J. Wei, J. Li, P. Zhang, “Preparation of high-performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag”, Resources, Conservation and Recycling, 2011, vol. 56, no. 1, pp. 48-55, DOI: 10.1016/j.resconrec.2011.09.003.
  • [7] Y. Li, N. Teng, R. Liu, Y. Cui, “Effect of particle size distribution of slag on the strength and pore structure of low-temperature concrete”, IOP Conference Series: Materials Science and Engineering, 2019, vol. 587, no. 1, DOI: 10.1088/1757-899X/587/1/012008.
  • [8] G. Liu, K. Schollbach, S. van der Laan, P. Tang, M.V. Florea, H.J.H. Brouwers, “Recycling and utilization of high volume converter steel slag into CO2 activated mortars - The role of slag particle size”, Resources, Conservation and Recycling, 2020, vol. 160, DOI: 10.1016/j.resconrec.2020.104883.
  • [9] Q. Wang, J. Yang, P. Yan, “Cementitious properties of super-fine steel slag”, Powder Technology, 2013, vol. 245, pp. 35-39, DOI: 10.1016/j.powtec.2013.04.016.
  • [10] E. Furlani, S. Maschio, M. Magnan, E. Aneggi, F. Andreatta, M. Lekka, L. Fedrizzi, “Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size”, Ceramics International, 2018, vol. 44, no. 5, pp. 5226-5232, DOI: 10.1016/j.ceramint.2017.12.131.
  • [11] J. Zang, W. Li, X. Shen, “The influence of steel slag with variable particle size distribution on the workability and mechanical properties of concrete”, Ceramics-Silikáty, 2019, vol. 63, no. 1, pp. 67-75, DOI: 10.13168/cs.2018.0046.
  • [12] W. Qiang, S. Mengxiao, Y. Jun, “Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete”, Construction and Building Materials, 2016, vol. 123, pp. 601-610, DOI: 10.1016/j.conbuildmat.2016.07.042.
  • [13] G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, “The mechanical properties of fly ash-based geopolymer concrete with alkaline activators”, Construction and Building Materials, 2013, vol. 47, pp. 409-418.
  • [14] I.I. Atabey, O. Karahan, C. Bilim, C.D. Atis, “The influence of activator type and quantity on the transport properties of class F fly ash geopolymer”, Construction and Building Materials, 2020, vol. 264, DOI: 10.1016/j.conbuildmat.2020.120268.
  • [15] M.O. Yusuf, M.A.M. Johari, Z.A. Ahmad, M. Maslehuddin, “Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars”, Materials and Design, 2014, vol. 63, pp. 710-718, DOI: 10.1016/j.matdes.2014.06.062.
  • [16] M. Ozturk, M.B. Bankir, O.S. Bolukbasi, U.K. Sevim, “Alkali activation of electric arc furnace slag: Mechanical properties and micro analyses”, Journal of Building Engineering, 2019, vol. 21, pp. 97-105, DOI: 10.1016/j.jobe.2018.10.005.
  • [17] N. You, B. Li, R. Cao, J. Shi, C. Chen, Y. Zhang, “The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar”, Construction and Building Materials, 2019, vol. 227, DOI: 10.1016/j.conbuildmat.2019.07.340.
  • [18] S.K. Singh, P. Vashistha, “Development of newer composite cement through mechano-chemical activation of steel slag”, Construction and Building Materials, 2021, vol. 268, DOI: 10.1016/j.conbuildmat.2020.121147.
  • [19] JGJ/T70-2009 Standard for test method of performance on building mortar, Beijing, China, 2009.
  • [20] BS EN 1015-11 Methods of test for mortar for masonry: Determination of flexural and compressive strength of hardened mortar, 1999.
  • [21] BS 1881-203 Testing concrete. Recommendations for measurement of velocity of ultrasonic pulses in concrete, 1986.
  • [22] N.H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, “Performance of steel slag and steel sludge in concrete”, Construction and Building Materials, 2016, vol. 104, pp. 16-24, DOI: 10.1016/j.conbuildmat.2015.12.008.
  • [23] BS EN 1015-3:1999 Methods of test for mortar for masonry. Determination of consistence of fresh mortar (by flow table), 1999.
  • [24] Q. Wang, P.Y. Yan, S. Han, “The influence of steel slag on the hydration of cement during the hydration process of complex binder”, Science China Technological Sciences, 2011, vol. 54, no. 2, pp. 388-394, DOI: 10.1007/s11431-010-4204-0.
  • [25] S. Liu, L. Li, “Influence of fineness on the cementitious properties of steel slag”, Journal of Thermal Analysis and Calorimetry, 2014, vol. 117, no. 2, pp. 629-634, DOI: 10.1007/s10973-014-3789-0.
  • [26] C.B. Wei, R. Othman, C.Y. Ying, R.P. Jaya, D.S. Ing, S.A. Mangi, “Properties of mortar with fine eggshell powder as partial cement replacement”, Materials Today: Proceedings, 2021, vol. 46, pp. 1574-1581.
  • [27] H. Qasrawi, F. Shalabi, I. Asi, “Use of low CaO unprocessed steel slag in concrete as fine aggregate”, Construction and Building Materials, 2009, vol. 23, no. 2, pp. 1118-1125, DOI: 10.1016/j.conbuildmat.2008.06.003.
  • [28] S.K. Rao, P. Sravana, T.C. Rao, “Experimental studies in ultrasonic pulse velocity of roller compacted concrete containing GGBS and M-sand”, International Journal of Pavement Research and Technology, 2016, vol. 9, no. 4, pp. 289-301, DOI: 10.1016/j.ijprt.2016.08.003.
  • [29] E. Arhab, A. Muntasir, M.M. Hasan, “Investigation on utilization of steel slag as coarse aggregate”, International Journal of Innovative Research in Science, Engineering and Technology, 2017, vol. 6, no. 4.
  • [30] N.V. Mahure, G.K. Vijh, P. Sharma, N. Sivakumar, M. Ratnam, “Correlation between pulse velocity and compressive strength of concrete”, International Journal of Earth Sciences and Engineering, 2011, vol. 4, no. 6, pp. 871-874.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9ca19776-703f-4b82-bfc5-a672f76dfc51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.