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1. Introduction

The classic Mittag—Leffler function, it plays an active role in fractional
calculus, is defined by

o Zk

Ea(2) = T+ k)’

k=0

aeC, Re(la)>0, zeC,

where I is the well known Gamma function. The original function E, 1(2) =
E.(z) was defined and studied by Mittag-Leffler in the year 1903, that is,
a uniparameter function, see [9, 10]. It is a direct generalization of the
exponential function. Wiman proposed and studied a generalization of the
role of Mittag—Lefller, who we’ll call it the Mittag—Leffler function with two
parameters E, g(z), (see [16]), Agarwal in 1953 and Humbert and Agarwal
in 1953, also made contributions to the final formalization of this function,
see also [3].
Now we define generalized ¢-convex sets and functions as follows:

Definition 1. A non empty set K is called generalized ¢-convex, if
u+1Eq(v—u) €K
holds for all u,v € K and 1 € [0,1].
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Definition 2. A function h : K C R — R is said to be generalized
¢p-convex on a generalized ¢-convex set IC, if the inequality

h(u+1Eq(v —w)) < h(v) + (1 —2)h(u)
holds for all u,v € KC and v € [0,1] with Eo(-) the Mittag-Leffler function.
We say that h is ¢-concave if —h is ¢p-convew.

Remark 1. 1). If F is an increasing function, and considering that
e? > z it is clear that, if F is ¢-convex then it is convex.

2). h(z) = z='/2 is a ¢-convex and it is not convex.
3). This result is still valid in the case of a general concave function.

Now, we give the definition of the non conformable fractional derivative
with its important properties which are useful in order to obtain our main
results, which is explained in the following definition:

Definition 3. Given a function h : [0,+00) — R. Then, the non con-
formable fractional derivative of h of order v at 1 is defined by
h(v+ee”) —h
NY(R)(2) = lim (1+ee”) W e@1), >0

e—0 IS

If h is v-differentiable in some (0,v), v > 0, lim,_,o+ h(")(2) exist, then
define

Additionally, note that if h is differentiable, then

(1) NY(R)(2) = € h'(z), where h'(1) = lim M
e—0 €

Remark 2. The adjective conformable may or may not be appropriate
here, since this was initially referred to as a conformable fractional derivative
Dyh(2), when v — 1 fulfill D,h(z) — h/(2); i.e., the conformable derivative
preserves the angle of the tangent line to the curve, while in the above
definition, taking into account (1), this angle is not conserved (more details
and examples on non conformable derivative can be found at [4]). On the
other hand, [1] presents a classification of most derivatives called fractional,
very useful for gathering more information.

Following the ideas presented in [4, 12], we can easily prove the next
result.

Theorem 1. Let v € (0,1] and h, g be v—differentiable at a point + > 0.
Then
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Ny (uh +vg) = uNy(h) + vNy(g) for all u,v € R,
g

e Nj(hg) = Ni(g) +gNi(h),
y RNY(g)—gN¥ (h
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Now, we give the definition of non conformable fractional integral.

Definition 4. Let v € (0,1] and 0 < u < v. We say that a function
F : [p1, p2] = R is v—fractional integrable on [p1, p2|, where F € Ly [p1, pa],
if the integral
X
f
N JUF(z) = ®) 4,

v
u €

exists and is finite.

From the above, we can define the following integrals, which will play an
important role in our work.

Definition 5. Suppose that h € Ly|p1, p2]. The quasi left and right
N —fractional integrals are defined by

r—1

T v
vl F @) = [ ) Fa, 2> o
Y

1

and

2 1—x v
it Fa) = [ (—2)ve &) Foyd,  po> 2,

respectively.

Remark 3. To facilitate the reading of the work, we present some ex-
amples of non conformable integrals of certain elementary functions.

1.

1 Lop
Ny J3 [27] :/0 2 e = =2 [0+ 1),1) = P(p+1),1)].

2 2 2
Ny J}, [sin’z] = / (2— IL‘)_§ e (0% sin2x dr = 1.98194115.
1

Ut

1 2 (1 - ;
Ny Jg, [sin2z] = /2 ( —~ a:) e~ V1I=2%gin2x dx = 0.17758203.
0
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1 5
Ny Jj, [2*] = / (5 — m)*% e~ V5242 gr = 12.11343529.
4

Inequalities of the Hermite-Hadamard type play a prominent role in the
theory of convex functions, see [5, 2]. If 7 : I — R is a convex function on
the interval I, then for any g1, p2 € I with p; < po, we have the following
double inequality:

91 + 2 1 o2 F(p1) + F(p2)
(2) .F( 5 >§pz—p1/m }"(z)dzgf.

In recent years, this inequality has been generalized to conformable frac-
tional integrals, some results for convex functions can be consulted in [6, 7,
13, 8, 14, 15, 17, 18].

The aim of our article is to establish some new inequalities connected
with the Hermite-Hadamard inequalities via quasi left and right N-fractional
integral in Definition 4.

2. Main results

We will start with the following identity that will be useful in sequel.

Lemma 1. Let v € (0,1), F : [p1,92] — [0,400) be a differentiable
function defined on [p1, p2], with 0 < p1 < po. If F' € Ly [p1, p2], then

(v—-1)
(p2 — p1)*7v

1
_/ {e—(l—l)”_e_lv}}"(plz—k(l—z)pg)dz.
0

(e = 1)(F(p2) + F(p1))

[aTg - Fon) el Floa)] + "0 =20

Proof. We can write I as follows:

1
I = / [e_(l_l)u - e_’v}}"’(plz + (1 —1)p2)da
0

1 1
- / e_(l_z)u]:'(plz + (1 —1)p2)dv — / e_’v}"l(plz + (1 —1)p2) du.
0 0
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Integrating by parts the first integral, we obtain

1
/ e~ Fl o1+ (1 —1)pa) da
0

1
pEa—— (F(p1) —e " F(p2))
(1-v) /1 —(1—2)v
— e Y F(p1e+ (1 — ) p2)de
or o0 | (p12+ (1 —2)p2)
1
a—— (F(p1) — e ' Flp2))
1— ! =Rk
U0 ()
(p2 — 1) 0
1 _ (1—-w)
= F —e\F +—5 o~ F(p1).
pE— (F(p1) (2)) (o — g NeTen (1)
Of the second, we have
o, 1 )
et Flprn+(1—1 dv = F —e ' F
/0 (124 (1 —1)p2) pa— (F(p2) (1))
(1-wv)
+——5% ndoF(p2)
(p2 o pl)Q Na“vp1t
From these results we obtain the required equality. |

Corollary 1. Under the conditions of the previous lemma, if F' is an
increasing and generalized ¢p—convex function we have

(v-1) (e = D(F(p2) + F(p1))
(p2 — p1)%7v e(p2 — p1)

1
< / [e*(H)” — e’zv]f'(m +1Eq(p1 — p2))du.
0

(NI~ F(91) 48T Fl02)] +

Theorem 2. Letv € (0,1) and F : [p1, p2] — [0, +00) be a differentiable
function. If F' € Ly[p1, p2] and increasing function, then
(1-v) (e — 1)(F(p2) + F(p1))
(P2 — p1)*77 e(p2 — 1)
Proof.

[y, - F (1) vy Jg, F(92)] <

1
/ [6—(1—1)” _ e—z“]]:/(p2 + ZEa(pl - @2))dZ
0

1/2 , .
= / {e_(l_l) —e ! }f’(m +1Eq(p1 — p2))d2
0
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1 v v
+ / [e*(lﬂ) —e ! ]]:I(pg +1Eq(p1 — ©2))d2
1/2

1/2 , .
= / {e_(l_l) —e ! }f’(pz +1Eq(p1 — p2))d2
0

1
+ / [e_w - e_(l_”v}f'(m +1Bo(p2 — ¢1))de
1/2

1/2
= / |:e_(1_l)v — e—’LU:|
0
X [F'(p2 +1Ea(p1 — 02)) — F(p1 +1Ea(p2 — p1))] da.

Since the integrand is nonnegative, we obtain the desired inequality. |

Corollary 2. Under the assumptions of Theorem 2, taking F < K, we
get

(1-v)
(P2 — p1)*7"

2K(e—1)

®) (o2 — 1)’

[Ny oy = F (91) Ny S, F(2)] <

Theorem 3. Let v € (0,1) and F : [p1,p2] — [0,+00) be a differen-
tiable function defined on [p1, o], with 0 < p1 < po. If F' € Ly [p1, p2],
increasing and |F'| is a generalized ¢—convex function, then

(v—1) v )(]:(@2) +J'"(m))
W[ Nl oy~ F (1) + T, F2)] + pp—

< F(i,o)-r(iJ))(\f’ o) +17 m!)

where I'(p1, ) is the classical gamma function.

Proof. From Corollary 1, we have

(@2(1:;11))2‘“ [veTgp=F (1) + T, F(02)]

L (e = 1)(F(p2) + Flen)
e(p2 — 1)

1
< / {e*(lﬂ)v — e*’U} |F(p2 + 1Ea(p1 — p2))| do
0

1
< / e” 7" | F (o2 +1Ea(p1 — 02))| d
0

1
+ / e | (92 + 1Balp1 — p2))| do
0
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1 v
< [t W]+ 0= [
0

1
+ / e (1| F (o) + (1 —2) |[F(p2)|) da-
0
After calculating both integrals, we obtain the desired result. |

Corollary 3. Under the assumptions of Theorem 3, taking |F'| < K, we
get

(m(i;})é_y [Nl F (1) +nJ, F92)] +

() (1)

If the function F is generalized ¢-convex, then the following result holds:

(e —1)(F(p2) + F(p1))
e(p2 — 1)

(4)

Theorem 4. Let v € (0,1) and F : [p1, p2] — [0,+00) be a generalized
¢—convex and increasing function defined on [p1, 2], with 0 < o1 < o,
then

(5) <m ke m) N T8 Flp2)

< min {F(p2) (A~ B) — F(p1)C), Flp1) (A - B) — Fpn)C) },

r (2o ner ()G
or (2o 2o

Proof. Taking into account that, on [p1, 2], we have

(©) o= () ez (S2) -

) o= (25) ez (S2)

2 —1 P2 — 01

where

and

From (6) and (7), we obtain, respectively,

(8) eV < e_(@;ilm)U(Z_pI)U

)



12 MUHAMMAD AAMIR ALI ET AL. ...

9) e < (@) 0",

From (8), we get

2 1= P1

f(@)eiplv < P2—01 )vdz

N T F () < (92— 1) /
©1

1
< (ps— 1) / Flor + (92 — p1)2)e """ dz
0

1
< (p2 — @1)/ F(p1 + 2Eolpa — 1)) dz
0

v

1
< (2—p0) | IFlons+ (1= 2)F(pa))e"d:
< {F(p2)(A = B) = F(p1)C}
Similarly, from (9), we have

Nadg F(92) < F(p1)(A = B) — F(p2)C.

From the last inequality we obtain the desired result. |

Corollary 4. Under the assumptions of Theorem 4, taking |F'| < K, we

T () s (e(0) £ (1)

Theorem 5. Let v € (0,1) and F : [p1, p2] — [0,+00) be a generalized
¢—convex and increasing function defined on [p1,p2], with 0 < p1 < P2,
then

(10)  n;Jg, Flp2) <

1
v(gp2 — @1)3
x {H(F(p2) — F(p1)) — G(p2F (p2) — p1F (1))} 5

where

2 2 1 1
H=T<,@2> —F<7W1U), G=F<a@2“> —F<7@1U>-
v v () ()

Proof. The change of variable 1 = pas + p1(1 — s) and the ¢-convexity
of F, give

2 1 U
f(l)e—zvdz = W/ F (p2s + p1(1 — 5)) o~ (p25+p1(1=5))" 1
1 9 — ©1 0
1
< (plp)/ f(@l + SEQ(QQ — @1)) 6*(p23+pl(175))vds
2 — 1 0
1 1 )
< (@KJ)/ [F(p1)s + Flp2)(1 — s)] e~ @2stor(1=)" g g,
2 — 1 0
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Integrating the last expression, we obtain

1
/ [F(p1)s + F(p2)(1 — s)] o~ (p25t01(1=9))" 1
0

- (e (Rer) o (Boor)) e - Fon)

(£ (5oe) - (Goon) ) a0 - er 7o)

where we get the desired inequality. |

Corollary 5. Under the assumptions of Theorem &, taking F < K, we
get

1
(11) N g Fl2) € —————5 < KG(p1 — p2).
v(p2 — p1)

The inequality (10) can be refined, if we use the notion of generalized
¢-convexity directly, as the following result shows.

Theorem 6. Let v € (0,1) and F : [p1, p2] — [0,+00) be a generalized
¢—convex and increasing function defined on [p1, pa2], with 0 < p1 < @9,
then

1
v(p2 — 91)*Ealp2 — 01)

X [}'(rm) HF (i’ <m + m)v) -t (i’plvﬂ
(b (20 ) ) (o)
cre [ (3 (2 ) ) or (Ba)]
ol (b (2 ) ) ()]

Proof. The change of variable 1 = pas + p1(1 — s), the ¢—convexity of
F and integrating, we have

N4 ngf(WQ) S

2 f’( ) *lud 1
1)e 1 =——"""-"7
o1 Eq(p2 — 1)

©2—91
Ea(p2—p1) v
y /E v2—p1 F (p1 + sEa(pa — p1)) e~ @1+ sBalo2—01)" g
0

02 =01

1 Ea(p2—91) v
< F s+ F 1 — )] e~ (w2stp1(1=9))" 1o



14 MUHAMMAD AAMIR ALI ET AL. ...

1

= Sos — ) Ba(ps —pn) PV =92+ F (@) (P+01Q))

where .
P ) ) o)
v \ Ea(p2 — 01) v
and . (o pl)Q Y .
o= (G (et g o) ) e (o))
This completes the proof. |

Remark 4. Taking suitable values of v € (0,1) and different values of
« that using in Mittag—LefHler function in all proved results of this paper,
we get different new interesting inequalities. The details are left to the
interested reader.

3. Conclusion

In a similar way interested reader can obtain new results for generalized
¢—convex functions by using different operators such as the k—Riemann-Liou-
ville fractional integral, Katugampola fractional integrals, the conformable
fractional integral, Hadamard fractional integrals, etc., and these results can
be applied in different areas of pure and applied sciences.

In recent years, with the appearance of differential and integral fractional
operators, various criticisms and questions have arisen. We could argue for
various reasons but we would like to use some phrases from [11]: “In my
opinion, it is not correct to assume that a given fractional calculus operator
can describe very well the dynamics of all types of complex phenomena”
and “The advantage of the fractional calculus is that we do not have a
single fractional order operator, but we have classes of operators which are
valid for the specific types of real data” is more than demonstrated by the
History of Mathematics, throughout the development of our science, which
the researchers have not stopped, have continued searching for new tools.
On the other hand, in the Conclusions the author stresses “In my opinion,
the correct formulations of the fractional modelling will play a fundamental
role in clarifying the importance of fractional calculus operators with or
without semigroup property”, in other words, the real world it does not
adapt to our tools, we must create the tools to study it better!
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by National Natural Science Foundation of China (No. 11971241).
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